[1] |
Zhang X, Li Y, Wang Y, Cai H, Zeng H, et al. 2019. Influence of future climate change in suitable habitats of tea in different countries. Biodiversity Science 27:595−606 doi: 10.17520/biods.2019085 |
[2] |
Brooker RW, Bennett AE, Cong WF, Daniell TJ, George TS, et al. 2015. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytologist 206:107−17 doi: 10.1111/nph.13132 |
[3] |
Rivest D, Cogliastro A. 2019. Establishment success of seven hardwoods in a tree-based intercropping system in southern Quebec, Canada. Agroforestry Systems 93:1073−80 doi: 10.1007/s10457-018-0211-0 |
[4] |
Aziz M, Mahmood A, Asif M, Ali A. 2015. Wheat-based intercropping: A review. Journal of Animal and Plant Sciences 25:896−907 |
[5] |
Bedoussac L, Journet EP, Hauggaard-Nielsen H, Naudin C, Corre-Hellou G, et al. 2015. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming: A review. Agronomy for Sustainable Development 35:911−35 doi: 10.1007/s13593-014-0277-7 |
[6] |
Pulkrábek J, Capouchová I. 2007. Wojtkowski, P.A.: Introduction to agroecology: Principles and practices. Biologia Plantarum 51:596 doi: 10.1007/s10535-007-0131-8 |
[7] |
Curtright A J, Tiemann L K. 2021. Intercropping increases soil extracellular enzyme activity: A meta-analysis. Agriculture Ecosystems & Environment 319:107498 doi: 10.1016/j.agee.2021.107489 |
[8] |
de Souza HN, de Goede RGM, Brussaard L, Cardoso IM, Duarte EMG, et al. 2012. Protective shade, tree diversity and soil properties in coffee agroforestry systems in the Atlantic Rainforest biome. Agriculture Ecosystems & Environment 146:179−96 doi: 10.1016/j.agee.2011.11.007 |
[9] |
Farooq TH, Kumar U, Mo J, Shakoor A, Wang J, et al. 2021. Intercropping of peanut-tea enhances soil enzymatic activity and soil nutrient status at different soil profiles in subtropical southern China. Plants-Basel 10:881 doi: 10.3390/plants10050881 |
[10] |
Nentwig W. 2003. Management of biodiversity in agroecosystems. Basic and Applied Ecology 4:105−6 doi: 10.1078/1439-1791-00166 |
[11] |
Chen L, Yuan P, You M, Pozsgai G, Ma X, et al. 2019. Cover crops enhance natural enemies while help suppressing pests in a tea plantation. Annals of the Entomological Society of America 112:348−55 doi: 10.1093/aesa/say050 |
[12] |
Wu T, Qin Y, Li M. 2021. Intercropping of tea (Camellia sinensis L.) and chinese chestnut:Variation in the structure of rhizosphere bacterial communities. Journal of Soil Science and Plant Nutrition 21:2178−90 doi: 10.1007/s42729-021-00513-0 |
[13] |
Duan Y, Shen J, Zhang X, Wen B, Ma Y, et al. 2019. Effects of soybean-tea intercropping on soil-available nutrients and tea quality. Acta Physiologiae Plantarum 41:140 doi: 10.1007/s11738-019-2932-8 |
[14] |
Zhang G, Chu X, Zhu H, Zou D, Li L, et al. 2021. The response of soil nutrients and microbial community structures in long-term tea plantations and diverse agroforestry intercropping systems. Sustainability 13:7799 doi: 10.3390/su13147799 |
[15] |
Zhang X, Jiang H, Wan X, et al. 2020. The effects of different types of mulch on soil properties and tea production and quality. Journal of the Science of Food and Agriculture 100:5292−300 doi: 10.1002/jsfa.10580 |
[16] |
Wen B, Zhang X, Ren S, Duan Y, Zhang Y, et al. 2020. Characteristics of soil nutrients, heavy metals and tea quality in different intercropping patterns. Agroforestry Systems 94:963−74 doi: 10.1007/s10457-019-00463-8 |
[17] |
Chen L, Yuan P, Pozsgai G, Chen P, Zhu H, et al. 2019. The impact of cover crops on the predatory mite Anystis baccarum (Acari, Anystidae) and the leafhopper pest Empoasca onukii (Hemiptera, Cicadellidae) in a tea plantation. Pest Management Science 75:3371−80 doi: 10.1002/ps.5489 |
[18] |
Ma Y, Fu S, Zhang X, Zhao K, Chen HYH. 2017. Intercropping improves soil nutrient availability, soil enzyme activity and tea quantity and quality. Applied Soil Ecology 119:171−78 doi: 10.1016/j.apsoil.2017.06.028 |
[19] |
Shen F, Lin SH. 2021. Priming effects of cover cropping on bacterial community in a tea plantation. Sustainability 13:4345 doi: 10.3390/su13084345 |
[20] |
Liu Y, Duan M, Yu Z. 2013. Agricultural landscapes and biodiversity in China. Agriculture Ecosystems & Environment 166:46−54 doi: 10.1016/j.agee.2011.05.009 |
[21] |
Boudreau MA. 2013. Diseases in intercropping systems. Annual Review of Phytopathology 51:499−519 doi: 10.1146/annurev-phyto-082712-102246 |
[22] |
De Costa WAJM, Mohotti AJ, Wijeratne MA. 2007. Ecophysiology of tea. Brazilian Journal of Plant Physiology 19:299−332 doi: 10.1590/S1677-04202007000400005 |
[23] |
Duncan JMA, Saikia SD, Gupta N, Biggs EM. 2016. Observing climate impacts on tea yield in Assam, India. Applied Geography 77:64−71 doi: 10.1016/j.apgeog.2016.10.004 |
[24] |
Jayasinghe S, Kumar L. 2021. Potential impact of the current and future climate on the yield, quality, and climate suitability for tea [Camellia sinensis (L.) O. Kuntze]: A systematic review. Agronomy 11:619 doi: 10.3390/agronomy11040619 |
[25] |
Wang Y, Zhang GL, Yang S, Zou D, Xiao R, et al. 2018. Photosynthetic mechanism of tea yield and quality affected by different habitats. Chinese Journal of Applied Ecology 29:3596−606 doi: 10.13287/j.1001-9332.201811.029 |
[26] |
Song T, Xiao R, Peng W, Wang J, Li S, et al. 2006. Effects of intercropping white clover in tea plantation on soil environment in subtropical hilly region. Chinese Journal of Ecology 25:281−85 |
[27] |
Hajiboland R. 2017. Environmental and nutritional requirements for tea cultivation. Folia Horticulturae 29:199−220 doi: 10.1515/fhort-2017-0019 |
[28] |
Vadez V, Kholova J, Medina S, Kakkera A, Anderberg H. 2014. Transpiration efficiency: new insights into an old story. Journal of Experimental Botany 65:6141−53 doi: 10.1093/jxb/eru040 |
[29] |
Carr MKV. 2010. The role of water in the growth of the tea (Camellia sinensis) crop: A synthesis of research in eastern Africa 2. Water productivity. Experimental Agriculture 46:351−79 doi: 10.1017/s0014479710000281 |
[30] |
Wu J, Liu W, Chen C. 2017. How do plants share water sources in a rubber-tea agroforestry system during the pronounced dry season? Agriculture Ecosystems & Environment 236:69−77 doi: 10.1016/j.agee.2016.11.017 |
[31] |
Lv T, Wu Y, Shen J, Chen D, Jiang W, et al. 2019. N2O emissions from a tea field with deep application of nitrogen fertilizer and intercropping with white clover. Environmental Science 40:4221−29 doi: 10.13227/j.hjkx.201901254 |
[32] |
El Kateb H, Zhang H, Zhang P, Mosandl R. 2013. Soil erosion and surface runoff on different vegetation covers and slope gradients: A field experiment in Southern Shaanxi Province, China. CATENA 105:1−10 doi: 10.1016/j.catena.2012.12.012 |
[33] |
Wu T, Zou R, Pu D, Lan Z, Zhao B. 2021. Non-targeted and targeted metabolomics profiling of tea plants (Camellia sinensis) in response to its intercropping with Chinese chestnut. BMC Plant Biology 21:55−+ doi: 10.1186/s12870-021-02841-w |
[34] |
Guo Z, Zhang Y, Deegen P, Uibrig H. 2006. Economic analyses of rubber and tea plantations and rubber-tea intercropping in Hainan, China. Agroforestry Systems 66:117−27 doi: 10.1007/s10457-005-4676-2 |
[35] |
Liu W, Luo Q, Lu H, Wu J, Duan W. 2017. The effect of litter layer on controlling surface runoff and erosion in rubber plantations on tropical mountain slopes, SW China. CATENA 149:167−75 doi: 10.1016/j.catena.2016.09.013 |
[36] |
Mohotti AJ, Lawlor DW. 2002. Diurnal variation of photosynthesis and photoinhibition in tea: effects of irradiance and nitrogen supply during growth in the field. Journal of Experimental Botany 53:313−22 doi: 10.1093/jexbot/53.367.313 |
[37] |
Deng W, Fei Y, Wang S, Wan X, Zhang Z, et al. 2013. Effect of shade treatment on theanine biosynthesis in Camellia sinensis seedlings. Plant Growth Regulation 71:295−99 doi: 10.1007/s10725-013-9828-1 |
[38] |
Li Y, Jeyaraj A, Yu H, Wang Y, Ma Q, et al. 2020. Metabolic regulation profiling of carbon and nitrogen in tea plants Camellia sinensis (L.) O. kuntze in response to shading. Journal of Agricultural and Food Chemistry 68:961−74 doi: 10.1021/acs.jafc.9b05858 |
[39] |
Liu L, Lin N, Liu X, Yang S, Wang W, et al. 2020. From chloroplast biogenesis to chlorophyll accumulation: the interplay of light and hormones on gene expression in Camellia sinensis cv. Shuchazao leaves. Frontiers in Plant Science 11:256 doi: 10.3389/fpls.2020.00256 |
[40] |
Sano T, Horie H, Matsunaga A, Hirono Y. 2018. Effect of shading intensity on morphological and color traits and on chemical components of new tea (Camellia sinensis L.) shoots under direct covering cultivation. Journal of the Science of Food and Agriculture 98:5666−76 doi: 10.1002/jsfa.9112 |
[41] |
Teng R, Wang Y, Li H, Lin S, Liu H, et al. 2021. Effects of shading on lignin biosynthesis in the leaf of tea plant (Camellia sinensis (L.) O. Kuntze). Molecular Genetics and Genomics 296:165−77 doi: 10.1007/s00438-020-01737-y |
[42] |
Zhang Q, Liu M, Mumm R, Vos RCH, Ruan J. 2021. Metabolomics reveals the within-plant spatial effects of shading on tea plants. Tree Physiology 41:317−30 doi: 10.1093/treephys/tpaa127 |
[43] |
Liu L, Li Y, She G, Zhang X, Jordan B, et al. 2018. Metabolite profiling and transcriptomic analyses reveal an essential role of UVR8-mediated signal transduction pathway in regulating flavonoid biosynthesis in tea plants (Camellia sinensis) in response to shading. BMC Plant Biology 18:233 doi: 10.1186/s12870-018-1440-0 |
[44] |
Duan Y, Shang X, Liu G, Zou Z, Zhu X, et al. 2021. The effects of tea plants-soybean intercropping on the secondary metabolites of tea plants by metabolomics analysis. BMC Plant Biology 21:482 doi: 10.1186/s12870-021-03258-1 |
[45] |
Wu T, Jiang Y, Li M, Pu D, Shi M, et al. 2022. RNA-seq analysis reveals the potential mechanism of improved viability and product quality of tea plants through intercropping with Chinese chestnut. Plant Growth Regulation 96:177−93 doi: 10.1007/s10725-021-00768-8 |
[46] |
Roy S, Handique G, Muraleedharan N, Dashora K, Roy SM, et al. 2016. Use of plant extracts for tea pest management in India. Applied Microbiology and Biotechnology 100:4831−44 doi: 10.1007/s00253-016-7522-8 |
[47] |
Garvey PM, Banks PB, Suraci JP, Bodey TW, Glen AS, et al. 2020. Leveraging motivations, personality, and sensory cues for vertebrate pest management. Trends in Ecology & Evolution 35:990−1000 doi: 10.1016/j.tree.2020.07.007 |
[48] |
Srivani Maddala VK. 2019. Green pest management practices for sustainable buildings: Critical review. Science Progress 102:141−52 doi: 10.1177/0036850419842459 |
[49] |
Yamamoto A. 2012. Problems of the insecticide resistance management for sustained insect pest control. Journal of Pesticide Science 37:392−98 doi: 10.1584/jpestics.W12-20 |
[50] |
Chen L, You M, Chen S. 2011. Effects of cover crops on spider communities in tea plantations. Biological Control 59:326−35 doi: 10.1016/j.biocontrol.2011.09.007 |
[51] |
Li J, Zhou Y, Zhou B, Tang H, Chen Y, et al. 2019. Habitat management as a safe and effective approach for improving yield and quality of tea (Camellia sinensis) leaves. Scientific Reports 9:433 doi: 10.1038/s41598-018-36591-x |
[52] |
Zhang Z, Luo Z, Gao Y, Bian L, Sun X, et al. 2014. Volatiles from non-host aromatic plants repel tea green leafhopper Empoasca vitis. Entomologia Experimentalis Et Applicata 153:156−69 doi: 10.1111/eea.12236 |
[53] |
Zhang Z, Zhou C, Xu Y, Huang X, Zhang L, et al. 2017. Effects of intercropping tea with aromatic plants on population dynamics of arthropods in Chinese tea plantations. Journal of Pest Science 90:227−37 doi: 10.1007/s10340-016-0783-2 |
[54] |
Niu Y, Han S, Wu Z, Pan C, Wang M, et al. 2022. A push-pull strategy for controlling the tea green leafhopper (Empoasca flavescens F.) using semiochemicals from Tagetes erecta and Flemingia macrophylla. Pest Management Science 78:2161−72 doi: 10.1002/ps.6840 |
[55] |
Zhang Z, Sun X, Luo Z, Bian L, Chen Z. 2014. Dual action of Catsia tora in tea plantations: repellent volatiles and augmented natural enemy population provide control of tea green leafhopper. Phytoparasitica 42:595−607 doi: 10.1007/s12600-014-0400-y |
[56] |
Chen L, Pozsgai G, Li X, Li L, Reddy GVP, et al. 2021. Effects of cover crops on beetle assemblages in tea plantations. Crop Protection 149:105783 doi: 10.1016/j.cropro.2021.105783 |
[57] |
Zhang R, Ji D, Zhang Q, Jin L. 2021. Evaluation of eleven plant species as potential banker plants to support predatory Orius sauteri in tea plant systems. Insects 12:162 doi: 10.3390/insects12020162 |
[58] |
Zou Y, Shen F, Zhong Y, Lv C, Pokharel SS, et al. 2022. Impacts of intercropped maize ecological shading on tea foliar and functional components, insect pest diversity and soil microbes. Plants-Basel 11:1883 doi: 10.3390/plants11141883 |
[59] |
Zhang Z, Sun X, Xin Z, Luo Z, Gao Y, et al. 2013. Identification and field evaluation of non-host volatiles disturbing host location by the tea Geometrid, Ectropis obliqua. Journal of Chemical Ecology 39:1284−96 doi: 10.1007/s10886-013-0344-6 |
[60] |
Gurr GM, Wratten SD, Landis DA, You M. 2017. Habitat management to suppress pest populations: progress and prospects. Annual Review of Entomology 62:91−109 doi: 10.1146/annurev-ento-031616-035050 |
[61] |
Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C, et al. 2015. Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications 6:6707 doi: 10.1038/ncomms7707 |
[62] |
Lareen A, Burton F, Schäfer P. 2016. Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology 90:575−87 doi: 10.1007/s11103-015-0417-8 |
[63] |
Oliverio AM, Bradford MA, Fierer N. 2017. Identifying the microbial taxa that consistently respond to soil warming across time and space. Global Change Biology 23:2117−29 doi: 10.1111/gcb.13557 |
[64] |
Zhalnina K, Dias R, De Quadros P, Davis-Richardson A, Camargo FAO, et al. 2015. Soil pH determines microbial diversity and composition in the park grass experiment. Microbial Ecology 69:395−406 doi: 10.1007/s00248-014-0530-2 |
[65] |
Wang T, Duan Y, Liu G, Shang X, Liu L, et al. 2022. Tea plantation intercropping green manure enhances soil functional microbial abundance and multifunctionality resistance to drying-rewetting cycles. The Science of the Total Environment 810:151282 doi: 10.1016/j.scitotenv.2021.151282 |
[66] |
Kuyah S, Whitney CW, Jonsson M, Sileshi GW, Öborn I, et al. 2019. Agroforestry delivers a win-win solution for ecosystem services in sub-Saharan Africa. A meta-analysis. Agronomy for Sustainable Development 39:47 doi: 10.1007/s13593-019-0589-8 |
[67] |
Leelamanie DAL, Mapa RB. 2015. Alterations in soil aggregate stability of a tropical Ultisol as mediated by changes in land use. Biologia 70:1444−49 doi: 10.1515/biolog-2015-0168 |
[68] |
Ma Z, Tanalgo KC, Xu Q, Li W, Wu S, et al. 2022. Influence of tea-Pleurotus ostreatus intercropping on soil fungal diversity and community structure. Canadian Journal of Soil Science 102:359−69 doi: 10.1139/cjss-2021-0123 |
[69] |
Bai Y, Li B, Xu C, Raza M, Wang Q, et al. 2022. Intercropping walnut and tea: Effects on soil nutrients, enzyme activity, and microbial communities. Frontiers in Microbiology 13:852342 doi: 10.3389/fmicb.2022.852342 |
[70] |
Segnini A, Posadas A, da Silva WTL, Milori DMBP, Gavilan C, et al. 2019. Quantifying soil carbon stocks and humification through spectroscopic methods: A scoping assessment in EMBU-Kenya. Journal of Environmental Management 234:476−83 doi: 10.1016/j.jenvman.2018.12.108 |
[71] |
Tao T, Liu L, Small GE, Chen J, Wang Y, et al. 2021. The effects of land management patterns on soil carbon sequestration and C: N: P stoichiometry in sloping croplands in southern China. Agriculture Ecosystems & Environment 320:149−57 doi: 10.1016/j.agee.2021.107584 |
[72] |
Zhang K, Liu X, Kang M, Wang Y, Shen J, et al. 2020. N2O emissions from tea plantations with Sorghum intercropping and application of big urea pills. Environmental Science 41:2434−44 doi: 10.13227/j.hjkx.201911090 |
[73] |
Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, et al. 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications 7:10541 doi: 10.1038/ncomms10541 |
[74] |
Ruan Y. 2014. Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annual Review of Plant Biology 65:33−67 doi: 10.1146/annurev-arplant-050213-040251 |
[75] |
Cantarella H, Otto R, Soares JR, de Brito Silva AG. 2018. Agronomic efficiency of NBPT as a urease inhibitor: A review. Journal of Advanced Research 13:19−27 doi: 10.1016/j.jare.2018.05.008 |
[76] |
Shen F, Lin S. 2021. Shifts in bacterial community associated with green manure soybean intercropping and edaphic properties in a tea plantation. Sustainability 13:11478 doi: 10.3390/su132011478 |
[77] |
Wang L, Huang D, Fang Y, Wang F, Li F, et al. 2017. Soil fungal communities in tea plantation after 10 years of chemical vs. integrated fertilization. Chilean Journal of Agricultural Research 77:355−64 doi: 10.4067/S0718-58392017000400355 |
[78] |
Ran J, Wang D, Wang C, Zhang G, Zhang H. 2016. Heavy metal contents, distribution, and prediction in a regional soil-wheat system. Science of the Total Environment 544:422−31 doi: 10.1016/j.scitotenv.2015.11.105 |
[79] |
Li X, Ziadi N, Bélanger G, Cai Z, Xu H. 2011. Cadmium accumulation in wheat grain as affected by mineral N fertilizer and soil characteristics. Canadian Journal of Soil Science 91:521−31 doi: 10.4141/cjss10061 |
[80] |
Song P, Xu D, Yue J, Ma Y, Dong S, et al. 2022. Recent advances in soil remediation technology for heavy metal contaminated sites: A critical review. Science of the Total Environment 838:156417 doi: 10.1016/j.scitotenv.2022.156417 |
[81] |
An L, Pan Y, Wang Z, Zhu C. 2011. Heavy metal absorption status of five plant species in monoculture and intercropping. Plant and Soil 345:237−45 doi: 10.1007/s11104-011-0775-1 |
[82] |
Zhang J, Yang R, Li YC, Peng Y, Wen X, et al. 2020. Distribution, accumulation, and potential risks of heavy metals in soil and tea leaves from geologically different plantations. Ecotoxicology and Environmental Safety 195:110475 doi: 10.1016/j.ecoenv.2020.110475 |
[83] |
Wen B, Li L, Duan Y, Zhang Y, Shen J, et al. 2018. Zn, Ni, Mn, Cr, Pb and Cu in soil-tea ecosystem: The concentrations, spatial relationship and potential control. Chemosphere 204:92−100 doi: 10.1016/j.chemosphere.2018.04.026 |
[84] |
Aziz I, Mujeeb A. 2022. Halophytes for phytoremediation of hazardous metal(loid)s: A terse review on metal tolerance, bio-indication and hyperaccumulation. Journal of Hazardous Materials 424:127309 doi: 10.1016/j.jhazmat.2021.127309 |
[85] |
Chen X, Song B, Yao Y, Wu H, Hu J, et al. 2014. Aromatic plants play an important role in promoting soil biological activity related to nitrogen cycling in an orchard ecosystem. Science of the Total Environment 472:939−46 doi: 10.1016/j.scitotenv.2013.11.117 |
[86] |
Karak T, Bora K, Paul RK, Das S, Khare P, et al. 2017. Paradigm shift of contamination risk of six heavy metals in tea (Camellia sinensis L.) growing soil:A new approach influenced by inorganic and organic amendments. Journal of Hazardous Materials 338:250−64 doi: 10.1016/j.jhazmat.2017.05.036 |
[87] |
Zhang J, Zhang Z, Huang X. 2021. Spatial heterogeneity of pH and heavy metal Cd in the soils of tea gardens in the plateau mountain regions, PR China. Environmental Monitoring and Assessment 193:646 doi: 10.1007/s10661-021-09431-1 |
[88] |
Liao Y, Yu Z, Liu X, Zeng L, Cheng S, et al. 2019. Effect of major tea insect attack on formation of quality-related nonvolatile specialized metabolites in tea (Camellia sinensis) leaves. Journal of Agricultural and Food Chemistry 67:6716−24 doi: 10.1021/acs.jafc.9b01854 |