[1]

Jia X, Zhang W, Fernie AR, Wen W. 2021. Camellia sinensis (Tea). Trends in Genetics 37:201−2

doi: 10.1016/j.tig.2020.10.002
[2]

Liao YY, Zhou XC, Zeng LT. 2021. How does tea (Camellia sinensis) produce specialized metabolites which determine its unique quality and function: a review. Critical Reviews in Food Science and Nutrition 6:3751−67

doi: 10.1080/10408398.2020.1868970
[3]

Stamp N. 2003. Out of the quagmire of plant defense hypotheses. The Quarterly Review of Biology 78:23−55

doi: 10.1086/367580
[4]

Yue Y, Chu G, Liu X, Tang X, Wang W, et al. 2014. TMDB: a literature-curated database for small molecular compounds found from tea. BMC Plant Biology 14:243

doi: 10.1186/s12870-014-0243-1
[5]

Zhang L, Cao QQ, Granato D, Xu YQ, Ho CT. 2020. Association between chemistry and taste of tea: A review. Trends in Food Science & Technology 101:139−49

doi: 10.1016/j.jpgs.2020.05.015
[6]

Zeng L, Watanabe N, Yang Z. 2019. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma. Critical reviews in food science and nutrition 59:2321−34

doi: 10.1080/10408398.2018.1506907
[7]

Wan X, Xia T. 2015. Secondary Metabolism of Tea Plant. Beijing, China: Science Press. pp. 39

[8]

Ye J, Ye Y, Yin J, Jin J, Liang Y, et al. 2022. Bitterness and astringency of tea leaves and products: Formation mechanism and reducing strategies. Trends in Food Science & Technology 123:130−43

doi: 10.1016/j.jpgs.2022.02.031
[9]

Yao S, Liu Y, Zhuang J, Zhao Y, Dai X, et al. 2022. Insights into acylation mechanisms: co-expression of serine carboxypeptidase-like acyltransferases and their non-catalytic companion paralogs. Plant Journal 111:117−33

doi: 10.1111/tpj.15782
[10]

Zhao J, Li P, Xia T, Wan X. 2020. Exploring plant metabolic genomics: chemical diversity, metabolic complexity in the biosynthesis and transport of specialized metabolites with the tea plant as a model. Critical Reviews in Biotechnology 40:667−88

doi: 10.1080/07388551.2020.1752617
[11]

Zhu B, Guo J, Dong C, Li F, Qiao S, et al. 2021. CsAlaDC and CsTSI work coordinately to determine theanine biosynthesis in tea plants (Camellia sinensis L.) and confer high levels of L-theanine accumulation in a non-tea plant. Plant Biotechnology Journal 19:2395−97

doi: 10.1111/pbi.13722
[12]

Yang Z, Baldermann S, Watanabe N. 2013. Recent studies of the volatile compounds in tea. Food Research International 53:585−99

doi: 10.1016/j.foodres.2013.02.011
[13]

Chen D, Sun Z, Gao JJ, Peng JK, Wang Z, et al. 2022. Metabolomics combined with proteomics provides a novel interpretation of the compound differences among Chinese tea cultivars (Camellia sinensis var. sinensis) with different manufacturing suitabilities. Food Chemistry 377:131976

doi: 10.1016/j.foodchem.2021.131976
[14]

Gong A, Lian S, Wu N, Zhou Y, Zhao S, et al. 2020. Integrated transcriptomics and metabolomics analysis of catechins, caffeine and theanine biosynthesis in tea plant (Camellia sinensis) over the course of seasons. BMC Plant Biology 20:294

doi: 10.1186/s12870-020-02443-y
[15]

Zeng L, Zhou X, Liao Y, Yang Z. 2021. Roles of specialized metabolites in biological function and environmental adaptability of tea plant (Camellia sinensis) as a metabolite studying model. Journal of Advanced Research 34:159−71

doi: 10.1016/j.jare.2020.11.004
[16]

Chen Y, Wang M, Huang P, Tsao TM, Lin K. 2009. Influence of catechin on precipitation of aluminum hydroxide. Geoderma 152:296−300

doi: 10.1016/j.geoderma.2009.06.017
[17]

Wang X, Zhu W, Cheng X, Lu Z, Liu X, et al. 2021. The effects of circadian rhythm on catechin accumulation in tea leaves. Beverage Plant Research 1:8

doi: 10.48130/bpr-2021-0008
[18]

Yu X, He C, Li Y, Zhou J, Chen Y, et al. 2021. Effects of different spreading treatments on the formation of aroma quality in green tea. Beverage Plant Research 1:14

doi: 10.48130/bpr-2021-0014
[19]

Guo YQ, Chang XJ, Zhu C, Zhang ST, Li XZ, et al. 2019. De novo transcriptome combined with spectrophotometry and gas chromatography-mass spectrometer (GC-MS) reveals differentially expressed genes during accumulation of secondary metabolites in purple-leaf tea (Camellia sinensis cv Hongyafoshou). The Journal of Horticultural Science and Biotechnology 94:349−67

doi: 10.1080/14620316.2018.1521708
[20]

Guo Y, Zhu C, Zhao S, Zhang S, Wang W, et al. 2019. De novo transcriptome and phytochemical analyses reveal differentially expressed genes and characteristic secondary metabolites in the original oolong tea (Camellia sinensis) cultivar 'Tieguanyin' compared with cultivar 'Benshan'. BMC Genomics 20:265

doi: 10.1186/s12864-019-5643-z
[21]

Yang J, Gu D, Wu S, Zhou X, Chen J, et al. 2021. Feasible strategies for studying the involvement of DNA methylation and histone acetylation in the stress-induced formation of quality-related metabolites in tea (Camellia sinensis). Horticulture Research 8:253

doi: 10.1038/s41438-021-00679-9
[22]

Xia E, Tong W, Wu Q, Wei S, Zhao J, et al. 2020. Tea plant genomics: achievements, challenges and perspectives. Horticulture Research 7:7

doi: 10.1038/s41438-019-0225-4
[23]

Yu Y, Zhang Y, Chen X, Chen Y. 2019. Plant noncoding RNAs: hidden players in development and stress responses. Annual review of cell and developmental biology 35:407−31

doi: 10.1146/annurev-cellbio-100818-125218
[24]

Ma X, Zhao F, Zhou B. 2022. The characters of non-coding RNAs and their biological roles in plant development and abiotic stress response. International Journal of Molecular Sciences 23:4124

doi: 10.3390/ijms23084124
[25]

Axtell MJ, Meyers BC. 2018. Revisiting criteria for plant microRNA annotation in the era of big data. The Plant Cell 30:272−84

doi: 10.1105/tpc.17.00851
[26]

Song XW, Li Y, Cao XF, Qi YJ. 2019. MicroRNAs and their regulatory roles in plant-environment interactions. Annual Review of Plant Biology 70:489−525

doi: 10.1146/annurev-arplant-050718-100334
[27]

He M, Kong X, Jiang Y, Qu H, Zhu H. 2022. MicroRNAs: emerging regulators in horticultural crops. Trends in Plant Science 27:936−51

doi: 10.1016/j.tplants.2022.03.011
[28]

Bhogireddy S, Mangrauthia SK, Kumar R, Pandey AK, Singh S, et al. 2021. Regulatory non-coding RNAs: a new frontier in regulation of plant biology. Functional & Integrative Genomics 21:313−30

doi: 10.1007/s10142-021-00787-8
[29]

Xu S, Zhou L, Ponnusamy M, Zhang L, Dong Y, et al. 2018. A comprehensive review of circRNA: from purification and identification to disease marker potential. PeerJ 6:e5503

doi: 10.7717/peerj.5503
[30]

Jiang S, Cui J, Li X. 2021. MicroRNA-mediated gene regulation of secondary metabolism in plants. Critical Reviews in Plant Sciences 40:459−78

doi: 10.1080/07352689.2022.2031674
[31]

Gupta OP, Karkute SG, Banerjee S, Meena NL, Dahuja A. 2017. Contemporary Understanding of miRNA-Based Regulation of Secondary Metabolites Biosynthesis in Plants. Frontiers in Plant Science 8:374

doi: 10.3389/fpls.2017.00374
[32]

Krishnatreya DB, Agarwala N, Gill SS, Bandyopadhyay T. 2021. Understanding the role of miRNAs for improvement of tea quality and stress tolerance. Journal of Biotechnology 328:34−46

doi: 10.1016/j.jbiotec.2020.12.019
[33]

Samad AFA, Sajad M, Nazaruddin N, Fauzi IA, Murad AMA, et al. 2017. MicroRNA and transcription factor: key players in plant regulatory network. Frontiers in Plant Science 8:565

doi: 10.3389/fpls.2017.00565
[34]

Li H, Lin QQ, Yan ML, Wang ML, Wang P, et al. 2021. Relationship between secondary metabolism and miRNA for important flavor compounds in different tissues of tea plant (Camellia sinensis) as revealed by genome-wide miRNA analysis. Journal of Agricultural and Food Chemisrty 69:2001−12

doi: 10.1021/acs.jafc.0c07440
[35]

Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. 2011. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146:353−58

doi: 10.1016/j.cell.2011.07.014
[36]

Das A, Mondal TK. 2010. Computational identification of conserved microRNAs and their targets in tea (Camellia sinensis). American Journal of Plant Sciences 01:77−86

doi: 10.4236/ajps.2010.12010
[37]

Prabu GR, Mandal AKA. 2010. Computational Identification of miRNAs and Their Target Genes from Expressed Sequence Tags of Tea (Camellia sinensis). Genomics, Proteomics & Bioinformatics 8:113−21

doi: 10.1016/S1672-0229(10)60012-5
[38]

Zhu Q, Luo Y. 2013. Identification of miRNAs and their targets in tea (Camellia sinensis). Journal of Zhejiang University SCIENCE B 14:916−23

doi: 10.1631/jzus.B1300006
[39]

Mohanpuria P, Yadav SK. 2012. Characterization of novel small RNAs from tea (Camellia sinensis L.). Molecular Biology Reports 39:3977−86

doi: 10.1007/s11033-011-1178-3
[40]

Zhang Y, Zhu X, Chen X, Song C, Zou Z, et al. 2014. Identification and characterization of cold-responsive microRNAs in tea plant (Camellia sinensis) and their targets using high-throughput sequencing and degradome analysis. BMC Plant Biology 14:271

doi: 10.1186/s12870-014-0271-x
[41]

Zheng C, Zhao L, Wang Y, Shen J, Zhang Y, et al. 2015. Integrated RNA-seq and sRNA-seq analysis identifies chilling and freezing responsive key molecular players and pathways in tea plant (Camellia sinensis). PLoS ONE 10:e125031

doi: 10.1371/journal.pone.0125031
[42]

Liu S, Xu Y, Ma J, Wang W, Chen W, et al. 2016. Small RNA and degradome profiling reveals important roles for microRNAs and their targets in tea plant response to drought stress. Physiologia Plantarum 158:435−51

doi: 10.1111/ppl.12477
[43]

Guo Y, Zhao S, Zhu C, Chang X, Yue C, et al. 2017. Identification of drought-responsive miRNAs and physiological characterization of tea plant (Camellia sinensis L. ) under drought stress. BMC plant biology 17:211

doi: 10.1186/s12870-017-1172-6
[44]

Sun P, Cheng C, Lin Y, Zhu Q, Lin J, et al. 2017. Combined small RNA and degradome sequencing reveals complex microRNA regulation of catechin biosynthesis in tea (Camellia sinensis). PLoS ONE 12:e171173

doi: 10.1371/journal.pone.0171173
[45]

Jeyaraj A, Zhang X, Hou Y, Shangguan M, Gajjeraman P, et al. 2017. Genome-wide identification of conserved and novel microRNAs in one bud and two tender leaves of tea plant (Camellia sinensis) by small RNA sequencing, microarray-based hybridization and genome survey scaffold sequences. BMC Plant Biology 17:212

doi: 10.1186/s12870-017-1169-1
[46]

Jeyaraj A, Liu S, Zhang X, Zhang R, Shangguan M, et al. 2017. Genome-wide identification of microRNAs responsive to Ectropis oblique feeding in tea plant (Camellia sinensis L.). Scientific Reports 7:13634

doi: 10.1038/s41598-017-13692-7
[47]

Jeyaraj A, Wang X, Wang S, Liu S, Zhang R, et al. 2019. Identification of regulatory networks of microRNAs and their targets in response to Colletotrichum gloeosporioides in tea plant (Camellia sinensis L.). Frontiers in Plant Science 10:1096

doi: 10.3389/fpls.2019.01096
[48]

Xia E, Zhang H, Sheng J, Li K, Zhang Q, et al. 2017. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Molecular Plant 10:866−77

doi: 10.1016/j.molp.2017.04.002
[49]

Wei C, Yang H, Wang S, Zhao J, Liu C, et al. 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. PNAS 115:E4151−E4158

doi: 10.1073/pnas.1719622115
[50]

Zhang Q, Li W, Li K, Nan H, Shi C, et al. 2020. The chromosome-level reference genome of tea tree unveils recent bursts of non-autonomous LTR retrotransposons in driving genome size evolution. Molecular Plant 13:935−38

doi: 10.1016/j.molp.2020.04.009
[51]

Chen J, Zheng C, Ma J, Jiang C, Ercisli S, et al. 2020. The chromosome-scale genome reveals the evolution and diversification after the recent tetraploidization event in tea plant. Horticulture Research 7:63

doi: 10.1038/s41438-020-0288-2
[52]

Wang X, Feng H, Chang Y, Ma C, Wang L, et al. 2020. Population sequencing enhances understanding of tea plant evolution. Nature Communications 11:4447

doi: 10.1038/s41467-020-18228-8
[53]

Xia E, Tong W, Hou Y, An Y, Chen L, et al. 2020. The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation. Molecular Plant 13:1013−26

doi: 10.1016/j.molp.2020.04.010
[54]

Zhang W, Zhang Y, Qiu H, Guo Y, Wan H, et al. 2020. Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties. Nature Communications 11:3719

doi: 10.1038/s41467-020-17498-6
[55]

Wang P, Yu JJ, Jin S, Chen S, Yue C, et al. 2021. Genetic basis of high aroma and stress tolerance in the oolong tea cultivar genome. Horticulture Research 8:107

doi: 10.1038/s41438-021-00542-x
[56]

Zhang X, Chen S, Shi L, Gong D, Zhang S, et al. 2021. Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis. Nature Genetics 53:1250−59

doi: 10.1038/s41588-021-00895-y
[57]

Liu L, Chen H, Zhu J, Tao L, Wei C. 2022. miR319a targeting of CsTCP10 plays an important role in defense against gray blight disease in tea plant (Camellia sinensis). Tree Physiology 42:1450−62

doi: 10.1093/treephys/tpac009
[58]

Suo A, Lan Z, Lu C, Zhao Z, Pu D, et al. 2021. Characterizing microRNAs and their targets in different organs of Camellia sinensis var assamica. Genomics 113:159−70

doi: 10.1016/j.ygeno.2020.11.020
[59]

Jeyaraj A, Elango T, Yu Y, Chen X, Zou Z, et al. 2021. Impact of exogenous caffeine on regulatory networks of microRNAs in response to Colletotrichum gloeosporioides in tea plant. Scientia Horticulturae 279:109914

doi: 10.1016/j.scienta.2021.109914
[60]

Wang SS, Liu L, Mi XZ, Zhao SQ, An YL, et al. 2021. Multi-omics analysis to visualize the dynamic roles of defense genes in the response of tea plants to gray blight. Plant Journal 106:862−75

doi: 10.1111/tpj.15203
[61]

Zhu C, Zhang S, Zhou C, Chen L, Zaripov T, et al. 2020. Integrated transcriptome, microRNA, and phytochemical analyses reveal roles of phytohormone signal transduction and ABC transporters in flavor formation of oolong tea (Camellia sinensis) during solar withering. Journal of Agricultural and Food Chemistry 68:12749−67

doi: 10.1021/acs.jafc.0c05750
[62]

Zhao S, Mi X, Guo R, Xia X, Liu L, et al. 2020. The biosynthesis of main taste compounds is coordinately regulated by miRNAs and phytohormones in tea plant (Camellia sinensis). Journal of Agricultural and Food Chemistry 68:6221−36

doi: 10.1021/acs.jafc.0c01833
[63]

Zhao L, Chen C, Wang Y, Shen J, Ding Z. 2019. Conserved microRNA act boldly during sprout development and quality formation in Pingyang Tezaocha (Camellia sinensis). Frontiers in Genetics 10:237

doi: 10.3389/fgene.2019.00237
[64]

Liu S, Mi X, Zhang R, An Y, Zhou Q, et al. 2019. Integrated analysis of miRNAs and their targets reveals that miR319c/TCP2 regulates apical bud burst in tea plant (Camellia sinensis). Planta 250:1111−29

doi: 10.1007/s00425-019-03207-1
[65]

Zhao S, Wang X, Yan X, Guo L, Mi X, et al. 2018. Revealing of microRNA involved regulatory gene networks on terpenoid biosynthesis in Camellia sinensis in different growing time points. Journal of Agricultural and Food Chemistry 66:12604−16

doi: 10.1021/acs.jafc.8b05345
[66]

Zhou C, Zhu C, Fu H, Li X, Chen L, et al. 2019. Genome-wide investigation of superoxide dismutase (SOD) gene family and their regulatory miRNAs reveal the involvement in abiotic stress and hormone response in tea plant (Camellia sinensis). PLoS ONE 14:e223609

doi: 10.1371/journal.pone.0223609
[67]

Fan K, Fan D, Ding Z, Su Y, Wang X. 2015. Cs-miR156 is involved in the nitrogen form regulation of catechins accumulation in tea plant (Camellia sinensis L.). Plant Physiology and Biochemistry 97:350−60

doi: 10.1016/j.plaphy.2015.10.026
[68]

Sun P, Zhang Z, Zhu Q, Zhang G, Xiang P, et al. 2017. Identification of miRNAs and target genes regulating catechin biosynthesis in tea (Camellia sinensis). Journal of Integrative Agriculture 17:1154−64

doi: 10.1016/S2095-3119(17)61654-X
[69]

Tian C, Zhou C, Zhu C, Chen L, Shi B, et al. 2022. Genome-wide investigation of the miR166 family provides new insights into its involvement in the drought stress responses of tea plants (Camellia sinensis (L.) O. Kuntze). Forests 13:628

doi: 10.3390/f13040628
[70]

Zhu C, Zhang S, Fu H, Zhou C, Chen L, et al. 2019. Transcriptome and phytochemical analyses provide new insights into long non-coding RNAs modulating characteristic secondary metabolites of oolong tea (Camellia sinensis) in solar-withering. Frontiers in Plant Science 10:1638

doi: 10.3389/fpls.2019.01638
[71]

Sharma D, Tiwari M, Pandey A, Bhatia C, Sharma A, et al. 2016. MicroRNA858 is a potential regulator of phenylpropanoid pathway and plant development. Plant Physiology 171:944−59

doi: 10.1104/pp.15.01831
[72]

Li F, Wang W, Zhao N, Xiao B, Cao P, et al. 2015. Regulation of nicotine biosynthesis by an endogenous target mimicry of microRNA in tobacco. Plant Physiology 169:1062−71

doi: 10.1104/pp.15.00649
[73]

Wang L, Tang X, Zhang S, Xie X, Li M, et al. 2022. Tea GOLDEN2-LIKE genes enhance catechin biosynthesis through activating R2R3-MYB transcription factor. Horticulture Research 9:uhac117

doi: 10.1093/hr/uhac117
[74]

Wu L, Huang X, Liu S, Liu J, Guo Y, et al. 2020. Understanding the formation mechanism of oolong tea characteristic non-volatile chemical constitutes during manufacturing processes by using integrated widely-targeted metabolome and DIA proteome analysis. Food Chemistry 310:125941

doi: 10.1016/j.foodchem.2019.125941
[75]

Zhu B, Chen L, Lu M, Zhang J, Han J, et al. 2019. Caffeine content and related gene expression: novel insight into caffeine metabolism in Camellia plants containing low, normal, and high caffeine concentrations. Journal of Agricultural and Food Chemistry 67:3400−11

doi: 10.1021/acs.jafc.9b00240
[76]

Lin S, Chen Z, Chen T, Deng W, Wan X, et al. 2022. Theanine metabolism and transport in tea plants (Camellia sinensis L.): advances and perspectives. Critical Reviews in Biotechnology 00:1−15

doi: 10.1080/07388551.2022.2036692
[77]

Ament K, Kant MR, Sabelis MW, Haring MA, Schuurink RC. 2004. Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato. Plant Physiology 135:2025−37

doi: 10.1104/pp.104.048694
[78]

Hong G, Xue X, Mao Y, Wang L, Chen X. 2012. Arabidopsis MYC2 Interacts with DELLA Proteins in Regulating Sesquiterpene Synthase Gene Expression. The Plant Cell 24:2635−48

doi: 10.1105/tpc.112.098749
[79]

Zhou C, Zhu C, Li X, Chen L, Xie S, et al. 2022. Transcriptome and phytochemical analyses reveal the roles of characteristic metabolites in the taste formation of white tea during withering process. Journal of Integrative Agriculture 21:862−77

doi: 10.1016/S2095-3119(21)63785-1
[80]

Wang J, Meng X, Dobrovolskaya OB, Orlov YL, Chen M. 2017. Non-coding RNAs and their roles in stress response in plants. Genomics, Proteomics & Bioinformatics 15:301−12

doi: 10.1016/j.gpb.2017.01.007
[81]

Zhang G, Chen D, Zhang T, Duan A, Zhang J, et al. 2018. Transcriptomic and functional analyses unveil the role of long non-coding RNAs in anthocyanin biosynthesis during sea buckthorn fruit ripening. DNA Research 25:465−76

doi: 10.1093/dnares/dsy017
[82]

Bordoloi KS, Baruah PM, Das M, Agarwala N. 2022. Unravelling lncRNA mediated gene expression as potential mechanism for regulating secondary metabolism in Citrus limon. Food Bioscience 46:101448

doi: 10.1016/j.fbio.2021.101448
[83]

Varshney D, Rawal HC, Dubey H, Bandyopadhyay T, Bera B, et al. 2019. Tissue specific long non-coding RNAs are involved in aroma formation of black tea. Industrial Crops and Products 133:79−89

doi: 10.1016/j.indcrop.2019.03.020
[84]

Wan S, Zhang Y, Duan M, Huang L, Wang W, et al. 2020. Integrated Analysis of Long Non-coding RNAs (lncRNAs) and mRNAs Reveals the Regulatory Role of lncRNAs Associated With Salt Resistance in Camellia sinensis. Frontiers in Plant Science 11:218

doi: 10.3389/fpls.2020.00218
[85]

Li D, Jiang S, Wen X, Song X, Yang Y, et al. 2021. Sequencing and functional annotation of mRNAs and lncRNAs from tea (Camellia sinensis) leaves during infection by the fungal pathogen Lasiodiplodia theobromae. PhytoFrontiers™ 1:364−67

doi: 10.1094/phytofr-03-21-0020-a
[86]

Zhang Y, Li P, She G, Xu Y, Peng A, et al. 2021. Molecular basis of the distinct metabolic features in shoot tips and roots of tea plants (Camellia sinensis): characterization of MYB regulator for root theanine synthesis. Journal of Agricultural and Food Chemistry 69:3415−29

doi: 10.1021/acs.jafc.0c07572
[87]

Wang Y, Yang Y, Jiang X, Yang Y, Jiang S, et al. 2022. The sequence and integrated analysis of competing endogenous RNAs originating from tea leaves infected by the pathogen of tea leaf spot, Didymella segeticola. Plant Disease 106:1286−90

doi: 10.1094/PDIS-06-21-1324-A
[88]

Guo D, Xia Z, Jiang X, Huang H, Yang Y, et al. 2022. Sequencing and functional annotation of competing endogenous RNAs and microRNAs in tea leaves during infection by Lasiodiplodia theobromae. PhytoFrontiers™ 2:307−12

doi: 10.1094/phytofr-11-21-0075-a
[89]

Yang Y, Yin Q, Qiu C, Xia Z, Huang H, et al. 2022. Analysis of competing endogenous RNAs and microRNAs in tea (Camellia sinensis) leaves during infection by the leaf spot pathogen, Pestalotiopsis trachicarpicola. Molecular Plant-Microbe Interactions 35:432−38

doi: 10.1094/mpmi-10-21-0262-a
[90]

Jiang M, Chen H, Du Q, Wang L, Liu X, et al. 2021. Genome-wide identification of circular RNAs potentially involved in the biosynthesis of secondary metabolites inSalvia miltiorrhiza. Frontiers in Genetics 12:645115

doi: 10.3389/fgene.2021.645115
[91]

Tong W, Yu J, Hou Y, Li F, Zhou Q, et al. 2018. Circular RNA architecture and differentiation during leaf bud to young leaf development in tea (Camellia sinensis). Planta 248:1417−29

doi: 10.1007/s00425-018-2983-x
[92]

Chen C, Zeng Z, Liu Z, Xia R. 2018. Small RNAs, emerging regulators critical for the development of horticultural traits. Horticulture Research 5:63

doi: 10.1038/s41438-018-0072-8
[93]

Ulitsky I, Bartel DP. 2013. lincRNAs: genomics, evolution, and mechanisms. Cell 154:26−46

doi: 10.1016/j.cell.2013.06.020
[94]

Zhou Y, Deng R, Xu X, Yang Z. 2021. Isolation of mesophyll protoplasts from tea (Camellia sinensis) and localization analysis of enzymes involved in the biosynthesis of specialized metabolites. Beverage Plant Research 1:2

doi: 10.48130/bpr-2021-0002
[95]

Deng F, Zeng F, Shen Q, Abbas A, Cheng J, et al. 2022. Molecular evolution and functional modification of plant miRNAs with CRISPR. Trends in Plant Science 27:890−907

doi: 10.1016/j.tplants.2022.01.009
[96]

Zhou C, Chang X, Zhu C, Cheng C, Chen Y, et al. 2022. Establishment of an efficientin planta transformation method for Camellia sinensis. Biotechnology Bulletin 38:263−68

doi: 10.13560/j.cnki.biotech.bull.1985.2021-0635
[97]

Zhang Q, Su L, Zhang S, Xu X, Chen X, et al. 2020. Analyses of microRNA166 gene structure, expression, and function during the early stage of somatic embryogenesis in Dimocarpus longan Lour. Plant Physiology and Biochemistry 147:205−14

doi: 10.1016/j.plaphy.2019.12.014
[98]

Ormancey M, Guillotin B, San Clemente H, Thuleau P, Plaza S, et al. 2021. Use of microRNA-encoded peptides to improve agronomic traits. Plant Biotechnology Journal 19:1687−89

doi: 10.1111/pbi.13654
[99]

Isemura M. 2019. Catechin in human health and disease. Molecules 24:528

doi: 10.3390/molecules24030528