[1]

Fabiano B. 2017. Loss prevention and safety promotion in the process industries: issues and challenges. Process Safety and Environmental Protection 110:1−4

doi: 10.1016/j.psep.2017.08.030
[2]

Chen CC, Wang TC, Chen LY, Dai JH, Shu CM. 2010. Loss prevention in the petrochemical and chemical-process high-tech industries in Taiwan. Journal of Loss Prevention in the Process Industries 23:531−38

doi: 10.1016/j.jlp.2010.04.006
[3]

Jiang J, Wu H, Ni L, Zou M. 2018. CFD simulation to study batch reactor thermal runaway behavior based on esterification reaction. Process Safety and Environmental Protection 120:87−96

doi: 10.1016/j.psep.2018.08.029
[4]

Strasser W. 2010. CFD study of an evaporative trickle bed reactor: Mal-distribution and thermal runaway induced by feed disturbances. Chemical Engineering Journal 161:257−68

doi: 10.1016/j.cej.2010.04.049
[5]

Anastasov AI. 2002. A study of the influence of the operating parameters on the temperature of the hot spot in a fixed bed reactor. Chemical Engineering Journal 86:287−97

doi: 10.1016/S1385-8947(01)00178-4
[6]

Henda R, Machac A, Nilsson B. 2008. Heat and mass transport in a nonlinear fixed-bed catalytic reactor: Hot spots and thermal runaway. Chemical Engineering Journal 143:195−200

doi: 10.1016/j.cej.2008.04.015
[7]

Rudniak L, Machniewski PM, Milewska A, Molga E. 2004. CFD modelling of stirred tank chemical reactors: homogeneous and heterogeneous reaction systems. Chemical Engineering Science 59:5233−39

doi: 10.1016/j.ces.2004.09.014
[8]

Quina MMJ, Quinta-Ferreira RM. 1999. Thermal runaway conditions of a partially diluted catalytic reactor. Industrial & Engineering Chemistry Research 38:4615−23

doi: 10.1021/ie9807295
[9]

Dakkoune A, Vernières-Hassimi L, Leveneur S, Lefebvre D, Estel L. 2018. Risk analysis of French chemical industry. Safety Science 105:77−85

doi: 10.1016/j.ssci.2018.02.003
[10]

Ministry of Emergency Management of the People's Republic of China. 2009. www.mem.gov.cn/gk/gwgg/agwzlfl/tz_01/200906/t20090615_408946.shtml

[11]

Ministry of Emergency Management of the People's Republic of China. 2013. www.mem.gov.cn/gk/gwgg/agwzlfl/tz_01/201301/t20130118_236239.shtml

[12]

Zhang H, Bai M, Wang X, Gai J, Shu C, et al. 2021. Thermal runaway incidents-a serious cause of concern: An analysis of runaway incidents in China. Process Safety and Environmental Protection 155:277−86

doi: 10.1016/j.psep.2021.09.027
[13]

Semenoff N. 1928. Zur Theorie Des Verbrennungs Prozesses. Zeitschrift Fur Physik 48:571−82

doi: 10.1007/BF01340021
[14]

Leung JC. 1995. Simplified vent sizing methods incorporating two-phase flow. International Symposium on Runaway Reactions and Pressure Relief Design, Boston, MA, United States, Aug. 1995. pp. 200–36. United States: U.S. Department of Energy Office of Scientific and Technical Information. www.osti.gov/biblio/255381

[15]

Leung JC. 1986. Simplified vent sizing equations for emergency relief requirements in reactors and storage vessels. AIChE Journal 32:1622−34

doi: 10.1002/aic.690321006
[16]

American Institute of Chemical Engineers, Center for Chemical Process Safety. 2017. Guidelines for pressure relief and effluent handling systems. Second Edition. New York: John Wiley & Sons. 850 pp.

[17]

Fauske HK. 1988. Emergency relief system design for reactive and non-reactive systems: Extension of the DIERS methodology. Operations Progress 7:153−58

doi: 10.1002/prsb.720070307
[18]

Parry CF. (Ed.). 1992. Relief systems handbook. 199 pp.

[19]

Fisher HG, Forrest HS, Grossel SS, Huff SS, Muller AR, et al. 1992. Emergency relief system design using DIERS technology: The Design Institute for Emergency Relief Systems (DIERS) Project Manual. New York: John Wiley & Sons. pp. 235–55 https://doi.org/10.1002/9780470938317

[20]

Duxbury HA, Wilday AJ. 1990. Design of reactor relief systems. Process Safety and Environmental Protection 68:24–30. www.icheme.org/media/12157/x-paper-10.pdf

[21]

Etchells J, Snee T, Wilday J. 2000. Relief system design for exothermic runaway: the HSE strategy. IChemE Symposium Series 147: 299–312. www.icheme.org/media/10238/xv-paper-23.pdf

[22]

Singh J. 1994. Vent sizing for gas-generating runaway reactions. Journal of Loss Prevention in the Process Industries 7:481−91

doi: 10.1016/0950-4230(94)80006-5
[23]

Leung JC. 1992. Venting of runaway reactions with gas generation. AIChE journal 38:723−32

doi: 10.1002/aic.690380509
[24]

Wilday AJ, Shaluf IM, Foster PJ. 1997. Comparison of pressure relief and instrument protective systems by means of a case study. IChemE Symposium Series. 141:425–36. www.icheme.org/media/10336/xiii-paper-39.pdf

[25]

Leung JC, Fauske HK. 1987. Runaway system characterization and vent sizing based on DIERS methodology. Plant/Operations Progress 6:77−83

doi: 10.1002/prsb.720060208
[26]

Leung JC, Noronha JA, Torres AJ. 1995. A vent sizing program with particular reference to hybrid runaway reaction systems. International symposium on runaway reactions and pressure relief design, Boston, MA, United States, 1995. pp. 567–79. United States: U.S. Department of Energy, Office of Scientific and Technical Information. www.osti.gov/biblio/255398

[27]

Duxbury HA. 1980. Sizing of Relief Systems for Polymerization Reactors. Chemical Engineer - London 352:31−37

[28]

Creed MJ, Fauske HK. 1990. An easy, inexpensive approach to the DIERS procedure. Chemical Engineering Progress 86:45−49

[29]

Moncalvo D, Friedel L. 2009. Single and two-phase flows of shear-thinning media in safety valves. Journal of Hazardous Materials 168:1521−26

doi: 10.1016/j.jhazmat.2009.03.046
[30]

Gustin JL. 2006. Vent sizing for the phenol + formaldehyde reaction. Organic Process Research & Development 10:1263−74

doi: 10.1021/op068007+
[31]

Véchot L, Minko W, Bigot JP, Kazmierczak M, Vicot P. 2011. Vent sizing: Analysis of the blowdown of a hybrid non tempered system. Journal of Hazardous Materials 191:8−18

doi: 10.1016/j.jhazmat.2011.03.100
[32]

Jiang J, Zhang C, Chai X, Shi N, Cao Y. 2016. Thermal runaway and safety relief of vinyl acetate polymerization reactors. Journal of Chemical Engineering of Chinese Universities 30:1119−26

[33]

Wei T, Jiang H. 2012. Venting design for di-tert-butyl peroxide runaway reaction based on accelerating rate calorimeter test. Chinese Journal of Chemical Engineering 20:710−14

doi: 10.1016/S1004-9541(11)60239-5
[34]

Deng J, Sun X, Chen W, Jia Y. 2013. Thermal runaway risk and vent sizing of dicumyl peroxide. China Safety Science Journal 23:90−95

doi: 10.16265/j.cnki.issn1003-3033.2013.09.025
[35]

Cao W, Li W, Yu S, Zhang Y, Shu C, et al. 2021. Explosion venting hazards of temperature effects and pressure characteristics for premixed hydrogen-air mixtures in a spherical container. Fuel 290:120034

doi: 10.1016/j.fuel.2020.120034
[36]

Cao W, Liu Y, Chen R, Li W, Zhang Y, et al. 2021. Pressure release characteristics of premixed hydrogen-air mixtures in an explosion venting device with a duct. International Journal of Hydrogen Energy 46:8810−19

doi: 10.1016/j.ijhydene.2020.12.052
[37]

Kim JH, Lee KH, Ko DC, Lee SB, Kim BM. 2017. Design of integrated safety vent in prismatic lithium-ion battery. Journal of Mechanical Science and Technology 31:2505−11

doi: 10.1007/s12206-017-0448-y
[38]

Ouyang D, Weng J, Chen M, Wang J. 2022. What a role does the safety vent play in the safety of 18650-size lithium-ion batteries? Process Safety and Environmental Protection 159:433−41

doi: 10.1016/j.psep.2022.01.017
[39]

Jin M, Zhu Y, Zhang J, Sun F, Xu W, et al. 2017. Risk assessment and inhibition of thermal runaway in vinyl acetate polymerization system. China Safety Science Journal 27:104−9

doi: 10.16265/j.cnki.issn1003-3033.2017.01.019
[40]

Zhang L, Yu W, Pan X, Fang J, Hua M, et al. 2015. Thermal hazard assessment for synthesis of 3-methylpyridine-N-oxide. Journal of Loss Prevention in the Process Industries 35:316−20

doi: 10.1016/j.jlp.2015.03.022
[41]

Zhang Y, Chung YH, Liu SH, Shu CM, Jiang JC. 2017. Analysis of thermal hazards of O, O-dimethylphosphoramidothioate by DSC, TG, VSP2, and GC/MS. Thermochimica Acta 652:69−76

doi: 10.1016/j.tca.2017.03.014
[42]

Rakotondramaro H, Wärnå J, Estel L, Salmi T, Leveneur S. 2016. Cooling and stirring failure for semi-batch reactor: Application to exothermic reactions in multiphase reactor. Journal of Loss Prevention in the Process Industries 43:147−57

doi: 10.1016/j.jlp.2016.05.011
[43]

Milewska A, Molga E. 2010. Safety aspects in modelling and operating of batch and semibatch stirred tank chemical reactors. Chemical Engineering Research and Design 88:304−19

doi: 10.1016/j.cherd.2009.10.014
[44]

Jiang J, Yang J, Jiang J, Pan Y, Yu Y, et al. 2016. Numerical simulation of thermal runaway and inhibition process on the thermal polymerization of styrene. Journal of Loss Prevention in the Process Industries 44:465−73

doi: 10.1016/j.jlp.2016.10.017
[45]

Hristov HV, Mann R. 2002. Fluid mixing and the safe quenching of a runaway reaction in a stirred autoclave. Chemical Engineering Research and Design 80:872−79

doi: 10.1205/026387602321143417
[46]

Torré JP, Fletcher DF, Lasuye T, Xuereb C. 2008. An experimental and CFD study of liquid jet injection into a partially baffled mixing vessel: A contribution to process safety by improving the quenching of runaway reactions. Chemical Engineering Science 63:924−42

doi: 10.1016/j.ces.2007.10.031
[47]

Torré JP, Fletcher DF, Touche I, Lasuye T, Xuereb C. 2008. Jet injection studies for partially baffled mixing reactors: a general correlation for the jet trajectory and jet penetration depth. Chemical Engineering Research and Design 86:1117−27

doi: 10.1016/j.cherd.2008.05.005
[48]

Dakshinamoorthy D, Khopkar AR, Louvar JF, Ranade VV. 2004. CFD simulations to study shortstopping runaway reactions in a stirred vessel. Journal of Loss Prevention in the Process Industries 17:355−64

doi: 10.1016/j.jlp.2004.06.007
[49]

Dakshinamoorthy D, Khopkar AR, Louvar JF, Ranade VV. 2006. CFD simulation of shortstopping runaway reactions in vessels agitated with impellers and jets. Journal of Loss Prevention in the Process Industries 19:570−81

doi: 10.1016/j.jlp.2006.02.003
[50]

Dakshinamoorthy D, Louvar JF. 2008. Shortstopping and jet mixers in preventing runaway reactions. Chemical Engineering Science 63:2283−93

doi: 10.1016/j.ces.2007.05.008
[51]

Ni L, Cui J, Jiang J, Pan Y, Wu H, et al. 2020. Runaway inhibition of styrene polymerization: A simulation study by chaos divergence theory. Process Safety and Environmental Protection 135:294−300

doi: 10.1016/j.psep.2020.01.015
[52]

McIntosh RD, Nolan PF. 2001. Review of the selection and design of mitigation systems for runaway chemical reactions. Journal of Loss Prevention in the Process Industries 14:27−42

doi: 10.1016/S0950-4230(99)00085-6
[53]

Copelli S, Barozzi M, Petrucci N, Casson Moreno V. 2019. Modeling and process optimization of a full-scale emulsion polymerization reactor. Chemical Engineering Journal 358:1410−20

doi: 10.1016/j.cej.2018.10.055
[54]

Kammel U, Schlüter S, Steiff A, Weinspach PM. 1996. Control of runaway polymerization reactions by injection of inhibiting agents — A contribution to the safety of chemical reactors. Chemical Engineering Science 51:2253−59

doi: 10.1016/0009-2509(96)00082-6
[55]

Snee TJ, Cusco L. 2005. Pilot-scale evaluation of the inhibition of exothermic runaway. Process Safety and Environmental Protection 83:135−44

doi: 10.1205/psep.04240
[56]

Ampelli C, Di Bella D, Maschio G, Russo A. 2006. Calorimetric study of the inhibition of runaway reactions during methylmethacrylate polymerization processes. Journal of Loss Prevention in the Process Industries 19:419−24

doi: 10.1016/j.jlp.2005.10.003
[57]

Zhang M, Hong Y, Ding S, Hu J, Fan Y, et al. 2010. Encapsulated nano-heat-sinks for thermal management of heterogeneous chemical reactions. Nanoscale, 2:2790−97

doi: 10.1039/c0nr00585a
[58]

Chen Q, Ni L, Jiang J, Parker T, Chen Z, et al. 2020. Inhibition of exothermic runaway of batch reactors for the homogeneous esterification using nano-encapsulated phase change materials. Applied Thermal Engineering 178:115531

doi: 10.1016/j.applthermaleng.2020.115531
[59]

Chen Q, Ni L, Jiang J, Wang Q. 2021. Modeling of runaway inhibition in batch reactors using encapsulated phase change materials. Renewable Energy 170:387−99

doi: 10.1016/j.renene.2021.01.132
[60]

Li C, Ni L, Chen Q, Jiang J, Zhou K. 2022. Temperature control of exothermic reactions using n-Octadecane@ MF resin microPCMs based on esterification reactions. Processes 10:239

doi: 10.3390/pr10020239