[1]

Velasquez SM, Ricardi MM, Dorosz JG, Fernandez PV, Nadra AD, et al. 2011. O- glycosylated cell wall proteins are essential in root hair growth. Science 332:1401−3

doi: 10.1126/science.1206657
[2]

Barnes WJ, Anderson CT. 2018. Release, recycle, rebuild: cell-wall remodeling, autodegradation, and sugar salvage for new wall biosynthesis during plant development. Molecular Plant 11:31−46

doi: 10.1016/j.molp.2017.08.011
[3]

Carpita NC, Gibeaut DM. 1993. Structural models of primary cell walls in flowering plants, consistency of molecular structure with the physical properties of the walls during growth. The Plant Journal 3:1−30

doi: 10.1111/j.1365-313X.1993.tb00007.x
[4]

De Rybel B, Mähönen AP, Helariutta Y, Weijers D. 2016. Plant vascular development: from early specification to differentiation. Nature Reviews Molecular Cell Biology 17:30−40

doi: 10.1038/nrm.2015.6
[5]

Fry SC. 2004. Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells. New Phytologist 161:641−75

doi: 10.1111/j.1469-8137.2004.00980.x
[6]

Passardi F, Penel C, Dunand C. 2004. Performing the paradoxical: how plant peroxidases modify the cell wall. Trends in Plant Science 9:534−40

doi: 10.1016/j.tplants.2004.09.002
[7]

Saint-Jore-Dupas C, Nebenführ A, Boulaflous A, Follet-Gueye ML, Plasson C, et al. 2006. Plant N-glycan processing enzymes employ different targeting mechanisms for their spatial arrangement along the secretory pathway. The Plant Cell 18:3182−200

doi: 10.1105/tpc.105.036400
[8]

Apweiler R, Hermjakob H, Sharon N. 1999. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochimica et Biophysica Acta (BBA) - General Subjects 1473:4−8

doi: 10.1016/S0304-4165(99)00165-8
[9]

Budnik BA, Lee RS, Steen JAJ. 2006. Global methods for protein glycosylation analysis by mass spectrometry. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomic 1764:1870−80

doi: 10.1016/j.bbapap.2006.10.005
[10]

Faye L, Boulaflous A, Benchabane M, Gomord V, Michaud D. 2005. Protein modifications in the plant secretory pathway: current status and practical implications in molecular pharming. Vaccine 23:1770−78

doi: 10.1016/j.vaccine.2004.11.003
[11]

Bu T, Shen J, Chao Q, Shen Z, Yan Z, et al. 2017. Dynamic N-glycoproteome analysis of maize seedling leaves during de-etiolation using Concanavalin A lectin affinity chromatography and a nano-LC–MS/MS-based iTRAQ approach. Plant Cell Reports 36:1943−58

doi: 10.1007/s00299-017-2209-x
[12]

Kieliszewski MJ, Shpak E. 2001. Synthetic genes for the elucidation of glycosylation codes for arabinogalactan-proteins and other hydroxyproline-rich glycoproteins. Cellular and Molecular Life Sciences CMLS 58:1386−98

doi: 10.1007/PL00000783
[13]

Pan S, Chen R, Aebersold R, Brentnall TA. 2010. Mass spectrometry based glycoproteomics—from a proteomics perspective. Molecular & Cellular Proteomics 10:R110.003251

doi: 10.1074/mcp.R110.003251
[14]

Karam AK, Karlan BY. 2010. Ovarian cancer: the duplicity of CA125 measurement. Nature Reviews Clinical Oncology 6:335−39

doi: 10.1038/nrclinonc.2010.44
[15]

Jin L, Wessely O, Marcusson EG, Ivan C, Calin GA, et al. 2013. Prooncogenic factors miR-23b and miR-27b are regulated by Her2/Neu, EGF, and TNF-α in breast cancer. Cancer Research 73:2884−96

doi: 10.1158/0008-5472.can-12-2162
[16]

Gilgunn S, Conroy PJ, Saldova R, Rudd PM, O'Kennedy RJ. 2013. Aberrant PSA glycosylation-a sweet predictor of prostate cancer. Nature Reviews Urology 10:99−107

doi: 10.1038/nrurol.2012.258
[17]

Ruiz-May E, Hucko S, Howe KJ, Zhang S, Sherwood RW, et al. 2014. A comparative study of lectin affinity based plant N-glycoproteome profiling using tomato fruit as a model. Molecular & Cellular Proteomics 13:566−79

doi: 10.1074/mcp.M113.028969
[18]

Catalá C, Howe KJ, Hucko S, Rose JKC, Thannhauser TW. 2011. Towards characterization of the glycoproteome of tomato (Solanum lycopersicum) fruit using Concanavalin A lectin affinity chromatography and LC-MALDI-MS/MS analysis. Proteomics 11:1530−44

doi: 10.1002/pmic.201000424
[19]

Minic Z, Jamet E, Négroni L, Arsene der Garabedian PA, Zivy M, et al. 2007. A sub-proteome of Arabidopsis thaliana mature stems trapped on Concanavalin A is enriched in cell wall glycoside hydrolases. Journal of Experimental Botany 58:2503−12

doi: 10.1093/jxb/erm082
[20]

Komatsu S, Yamada E, Furukawa K. 2009. Cold stress changes the concanavalin A-positive glycosylation pattern of proteins expressed in the basal parts of rice leaf sheaths. Amino Acids 36:115−23

doi: 10.1007/s00726-008-0039-4
[21]

Kumar S, Kumar K, Pandey P, Rajamani V, Padmalatha KV, et al. 2013. Glycoproteome of elongating cotton fiber cells. Molecular & Cellular Proteomics 12:3677−89

doi: 10.1074/mcp.M113.030726
[22]

Zhang Y, Giboulot A, Zivy M, Valot B, Jamet E, et al. 2011. Combining various strategies to increase the coverage of the plant cell wall glycoproteome. Phytochemistry 72:1109−23

doi: 10.1016/j.phytochem.2010.10.019
[23]

Helenius A, Aebi M. 2004. Roles of N-linked glycans in the endoplasmic reticulum. Annual Review of Biochemistry 73:1019−49

doi: 10.1146/annurev.biochem.73.011303.073752
[24]

Spiro RG. 2002. Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12:43R−56R

doi: 10.1093/glycob/12.4.43R
[25]

Zhang M, Chen G, Lv D, Li X, Yan Y. 2015. N-Linked glycoproteome profiling of seedling leaf in Brachypodium distachyon L. Journal of Proteome Research 14:1727−38

doi: 10.1021/pr501080r
[26]

Schwarz FP, Misquith S, Surolia A. 1996. Effect of substituent on the thermodynamics of D-glucopyranoside binding to concanavalin A, pea (Pisum sativum) lectin and lentil (Lens culinaris) lectin. The American Journal of Clinical Nutrition 316:123−29

doi: 10.1042/bj3160123
[27]

Kubota Y, Fujioka K, Takekawa M. 2017. WGA-based lectin affinity gel electrophoresis: A novel method for the detection of O-GlcNAc-modified proteins. PLoS One 12:e0180714

doi: 10.1371/journal.pone.0180714
[28]

Peumans WJ, Hause B, Van Damme EJ. 2000. The galactose-binding and mannose-binding jacalin-related lectins are located in different sub-cellular compartments. FEBS Letters 477:186−92

doi: 10.1016/S0014-5793(00)01801-9
[29]

Sharma V, Srinivas VR, Adhikari P, Vijayan M, Surolia A. 1998. Molecular basis of recognition by Gal/GalNAc specific legume lectins: influence of Glu 129 on the specificity of peanut agglutinin (PNA) towards C2-substituents of galactose. Glycobiology 8:1007−12

doi: 10.1093/glycob/8.10.1007
[30]

Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cézard L, et al. 2011. Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. The Plant Cell 23:1124−37

doi: 10.1105/tpc.110.082792
[31]

Gabaldón C, López-Serrano M, Pedreño MA, Barceló AR. 2005. Cloning and molecular characterization of the basic peroxidase isoenzyme from Zinnia elegans, an enzyme involved in lignin biosynthesis. Plant Physiology 139:1138−54

doi: 10.1104/pp.105.069674
[32]

Huang G, Gong S, Xu WL, Li W, Li P, et al. 2013. A Fasciclin-like arabinogalactan protein, GhFLA1, is involved in fiber initiation and elongation of cotton. Plant Physiology 161:1278−90

doi: 10.1104/pp.112.203760
[33]

Bienert MD, Delannoy M, Navarre C, Boutry M. 2012. NtSCP1 from Tobacco is an extracellular serine carboxypeptidase III that has an impact on cell elongation. Plant Physiology 158:1220−29

doi: 10.1104/pp.111.192088
[34]

Endo T. 1996. Fractionation of glycoprotein-derived oligosaccharides by affinity chromatography using immobilized lectin columns. Journal of Chromatography A 720:251−61

doi: 10.1016/0021-9673(95)00220-0
[35]

Kaji H, Saito H, Yamauchi Y, Shinkawa T, Taoka M, et al. 2003. Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nature Biotechnology 21:667−72

doi: 10.1038/nbt829
[36]

Drake RR, Schwegler EE, Malik G, Diaz J, Block T, et al. 2006. Lectin capture strategies combined with mass spectrometry for the discovery of serum glycoprotein biomarkers. Molecular & Cellular Proteomics 5:1957−67

doi: 10.1074/mcp.M600176-MCP200
[37]

Washburn MP, Wolters D, Yates JR. 2001. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotechnology 19:242−47

doi: 10.1038/85686
[38]

Bayer EM, Bottrill AR, Walshaw J, Vigouroux M, Naldrett MJ, et al. 2006. Arabidopsis cell wall proteome defined using multidimensional protein identification technology. Proteomics 6:301−11

doi: 10.1002/pmic.200500046
[39]

Zhu J, Alvarez S, Marsh EL, Lenoble ME, Cho IJ, et al. 2007. Cell wall proteome in the maize primary root elongation zone. II. Region-specific changes in water soluble and lightly ionically bound proteins under water deficit. Plant Physiology 145:1533−48

doi: 10.1104/pp.107.107250
[40]

Yang Z, Liu H, Wang X, Zeng Q. 2013. Molecular evolution and expression divergence of the Populus polygalacturonase supergene family shed light on the evolution of increasingly complex organs in plants. New Phytologist 197:1353−65

doi: 10.1111/nph.12107
[41]

Minic Z. 2008. Physiological roles of plant glycoside hydrolases. Planta 227:723−40

doi: 10.1007/s00425-007-0668-y
[42]

Vissenberg K, Stephen C, Fry SC, Pauly M, Höfte H, Verbelen JP. 2005. XTH acts at the microfibril – matrix interface during cell elongation. Journal of Experimental Botany 56:673−83

doi: 10.1093/jxb/eri048
[43]

Phan TD, Bo W, West G, Lycett GW, Tucker GA. 2007. Silencing of the major salt-dependent isoform of pectinesterase in tomato alters fruit softening. Plant Physiology 144:1960−67

doi: 10.1104/pp.107.096347
[44]

Chávez Montes RA, Ranocha P, Martinez Y, Minic Z, Jouanin L, et al. 2008. Cell wall modifications in Arabidopsis plants with altered α-L-Arabinofuranosidase activity. Plant PPhysiology 147:63−77

doi: 10.1104/pp.107.110023
[45]

Minic Z, Jouanin L. 2006. Plant glycoside hydrolases involved in cell wall polysaccharide degradation. Plant Physiology and Biochemistry 44:435−49

doi: 10.1016/j.plaphy.2006.08.001
[46]

Goujon T, Minic Z, El Amrani A, Lerouxel O, Aletti E, et al. 2003. AtBXL1, a novel higher plant (Arabidopsis thaliana) putative beta-xylosidase gene, is involved in secondary cell wall metabolism and plant development. The Plant Journal 33:677−90

doi: 10.1046/j.1365-313X.2003.01654.x
[47]

Chabi M, Goulas E, Leclercq CC, de Waele I, Rihouey C, et al. 2017. A cell wall proteome and targeted cell wall analyses provide novel information on hemicellulose metabolism in flax. Molecular & Cellular Proteomics 16:1634−51

doi: 10.1074/mcp.M116.063727
[48]

Augur C, Stiefel V, Darvill A, Albersheim P, Puigdomenech P, et al. 1995. Molecular cloning and pattern of expression of an α-L-fucosidase gene from pea seedlings. Journal of Biological Chemistry 270:24839−43

doi: 10.1074/jbc.270.42.24839
[49]

Hossain MA, Nakano R, Nakamura K, Hossain MT, Kimura Y. 2010. Molecular characterization of plant acidic α-mannosidase, a member of glycosylhydrolase family 38, involved in the turnover of N-glycans during tomato fruit ripening. The Journal of Biochemistry 148:603−16

doi: 10.1093/jb/mvq094
[50]

Chrost B, Kolukisaoglu U, Schulz B, Krupinska K. 2007. An α-galactosidase with an essential function during leaf development. Planta 225:311−20

doi: 10.1007/s00425-006-0350-9
[51]

Roitsch T, González MC. 2004. Function and regulation of plant invertases: sweet sensations. Trends in Plant Science 12:606−13

doi: 10.1016/j.tplants.2004.10.009
[52]

Zhao Q, Yuan S, Wang X, Zhang Y, Zhu H, et al. 2008. Restoration of mature etiolated cucumber hypocotyl cell wall susceptibility to expansin by pretreatment with fungal pectinases and EGTA in vitro. Plant Physiology 147:1874−85

doi: 10.1104/pp.108.116962
[53]

Xiao C, Somerville C, Anderson CT. 2014. POLYGALACTURONASE INVOLVED IN EXPANSION1 functions in cell elongation and flower development in Arabidopsis. The Plant Cell 26:1018−35

doi: 10.1105/tpc.114.123968
[54]

Chen X, Zhang M, Wang M, Tan G, Zhang M, et al. 2018. The effects of mepiquat chloride on the lateral root initiation of cotton seedlings are associated with auxin and auxin-conjugate homeostasis. BMC Plant Biology 18:361−68

doi: 10.1186/s12870-018-1599-4
[55]

Raggi S, Ferrarini A, Delledonne M, Dunand C, Ranocha P, et al. 2015. The Arabidopsis class III peroxidase AtPRX71 negatively regulates growth under physiological conditions and in response to cell wall damage. Plant Physiology 169:2513−25

doi: 10.1104/pp.15.01464
[56]

Sun X, Bai R, Zhang Y, Wang Q, Fan X, et al. 2013. Laccase-catalyzed oxidative polymerization of phenolic compounds. Applied Biochemistry and Biotechnology 171:1673−80

doi: 10.1007/s12010-013-0463-0
[57]

Daniel B, Pavkov-Keller T, Steiner B, Dordic A, Gutmann A, et al. 2015. Oxidation of monolignols by members of the berberine bridge enzyme family suggests a role in plant cell wall metabolism. Journal of Biological Chemistry 290:18770−81

doi: 10.1074/jbc.M115.659631
[58]

Zhao Q, Nakashima J, Chen F, Yin Y, Fu C, et al. 2013. LACCASE is necessary and nonredundant with PEROXIDASE for lignin polymerization during vascular development in Arabidopsis. The Plant Cell 25:3976−3987

doi: 10.1105/tpc.113.117770
[59]

Ben-Tov D, Abraham Y, Stav S, Thompson K, Loraine A, et al. 2015. COBRA-LIKE2, a member of the Glycosylphosphatidylinositol-Anchored COBRA-LIKE family, plays a role in cellulose deposition in Arabidopsis seed coat mucilage secretory cells. Plant Physiology 167:711−24

doi: 10.1104/pp.114.240671
[60]

Wang X, Wang K, Yin G, Liu X, Liu M, et al. 2018. Pollen-expressed leucine-rich repeat extensins are essential for pollen germination and growth. Plant Physiology 176:1993−2006

doi: 10.1104/pp.17.01241
[61]

Huang C, Zhang R, Gui G, Zhong Y, Li L. 2018. The receptor-like kinase AtVRLK1 regulates secondary cell wall thickening. Plant Physiology 177:671−83

doi: 10.1104/pp.17.01279
[62]

MacMillan CP, Mansfield SD, Stachurski ZH, Evans R, Southerton SG. 2010. Fasciclin-like arabinogalactan proteins: specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus. The Plant Journal 62:689−703

doi: 10.1111/j.1365-313X.2010.04181.x
[63]

Noguchi M, Fujiwara M, Sano R, Nakano Y, Fukao Y, et al. 2018. Proteomic analysis of xylem vessel cell differentiation in VND7-inducible tobacco BY-2 cells by two-dimensional gel electrophoresis. Plant Biotechnology 35:31−37

doi: 10.5511/plantbiotechnology.18.0129a
[64]

Han J, Li H, Yin B, Zhang Y, Liu Y, et al. 2019. The papain-like cysteine protease CEP1 is involved in programmed cell death and secondary wall thickening during xylem development in Arabidopsis. Journal of Experimental Botany 1:205−15

doi: 10.1093/jxb/ery356
[65]

Cao S, Guo M, Wang C, Xu W, Shi T, et al. 2019. Genome-wide characterization of aspartic protease (AP) gene family in Populus trichocarpa and identification of the potential PtAPs involved in wood formation. BMC Plant Biology 19:276

doi: 10.1186/s12870-019-1865-0
[66]

Zhao Y, Song D, Sun J, Li L. 2013. Populus endo-beta-mannanase PtrMAN6 plays a role in coordinating cell wall remodeling with suppression of secondary wall thickening through generation of oligosaccharide signals. The Plant Journal 74:473−85

doi: 10.1111/tpj.12137
[67]

Abedi T, Castilleux R, Nibbering P, Niittylä T. 2020. The spatio-temporal distribution of cell wall-associated glycoproteins during wood formation in Populus. Frontiers in Plant Science 11:611607

doi: 10.3389/fpls.2020.611607
[68]

Liu J, Hai G, Wang C, Cao S, Xu W, et al. 2015. Comparative proteomic analysis of Populus trichocarpa early stem from primary to secondary growth. Journal of Proteomics 126:94−108

doi: 10.1016/j.jprot.2015.05.032
[69]

Kalluri UC, Hurst GB, Lankford PK, Ranjan P, Pelletier DA. 2009. Shotgun proteome profile of Populus developing xylem. Proteomics 9:4871−80

doi: 10.1002/pmic.200800854