[1]

Bailey-Serres J, Voesenek LACJ. 2008. Flooding stress: acclimations and genetic diversity. Annual Review of Plant Biology 59:313−39

doi: 10.1146/annurev.arplant.59.032607.092752
[2]

Jagadish SVK, Way DA, Sharkey TD. 2021. Plant heat stress: Concepts directing future research. Plant, Cell & Environment 44:1992−2005

doi: 10.1111/pce.14050
[3]

Zhang H, Zhu J, Gong Z, Zhu J. 2022. Abiotic stress responses in plants. Nature Reviews Genetics 23:104−19

doi: 10.1038/s41576-021-00413-0
[4]

Zhu J. 2016. Abiotic stress signaling and responses in plants. Cell 167:313−24

doi: 10.1016/j.cell.2016.08.029
[5]

Asensi-Fabado MA, Amtmann A, Perrella G. 2017. Plant responses to abiotic stress: the chromatin context of transcriptional regulation. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1860:106−22

doi: 10.1016/j.bbagrm.2016.07.015
[6]

Nakashima K, Ito Y, Yamaguchi-Shinozaki K. 2009. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology 149:88−95

doi: 10.1104/pp.108.129791
[7]

Mitsuda N, Ohme-Takagi M. 2009. Functional analysis of transcription factors in Arabidopsis. Plant and Cell Physiology 50:1232−48

doi: 10.1093/pcp/pcp075
[8]

Eulgem T, Rushton PJ, Robatzek S, Somssich IE. 2000. The WRKY superfamily of plant transcription factors. Trends in Plant Science 5:199−206

doi: 10.1016/S1360-1385(00)01600-9
[9]

Chen L, Song Y, Li S, Zhang L, Zou C, et al. 2012. The role of WRKY transcription factors in plant abiotic stresses. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1819:120−28

doi: 10.1016/j.bbagrm.2011.09.002
[10]

Jiang J, Ma S, Ye N, Jiang M, Cao J, et al. 2017. WRKY transcription factors in plant responses to stresses. Journal of Integrative Plant Biology 59:86−101

doi: 10.1111/jipb.12513
[11]

Ülker B, Somssich IE. 2004. WRKY transcription factors: from DNA binding towards biological function. Current Opinion in Plant Biology 7:491−98

doi: 10.1016/j.pbi.2004.07.012
[12]

Rushton PJ, Somssich IE, Ringler P, Shen QJ. 2010. WRKY transcription factors. Trends in Plant Science 15:247−58

doi: 10.1016/j.tplants.2010.02.006
[13]

Ciolkowski I, Wanke D, Birkenbihl RP, Somssich IE. 2008. Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Molecular Biology 68:81−92

doi: 10.1007/s11103-008-9353-1
[14]

Zheng Z, Qamar SA, Chen Z, Mengiste T. 2006. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. The Plant Journal 48:592−605

doi: 10.1111/j.1365-313X.2006.02901.x
[15]

Wang D, Xu H, Huang J, Kong Y, AbuQamar, et al. 2020. The Arabidopsis CCCH protein C3H14 contributes to basal defense against Botrytis cinerea mainly through the WRKY33-dependent pathway. Plant, Cell & Envronment 43:1792−806

doi: 10.1111/pce.13771
[16]

Jiang Y, Deyholos MK. 2009. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Molecular Biology 69:91−105

doi: 10.1007/s11103-008-9408-3
[17]

Li S, Fu Q, Chen L, Huang W, Yu D. 2011. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 233:1237−52

doi: 10.1007/s00425-011-1375-2
[18]

Li H, Gao Y, Xu H, Dai Y, Deng D, et al. 2013. ZmWRKY33, a WRKY maize transcription factor conferring enhanced salt stress tolerances in Arabidopsis. Plant Growth Regulation 70:207−16

doi: 10.1007/s10725-013-9792-9
[19]

Liu S, Kracher B, Ziegler J, Birkenbihl RP, Somssich IE. 2015. Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100. eLife 4:e07295

doi: 10.7554/eLife.07295
[20]

Wang Y, Schuck S, Wu J, Yang P, Döring AC, et al. 2018. A MPK3/6-WRKY33-ALD1-pipecolic acid regulatory loop contributes to systemic acquired resistance. The Plant Cell 30:2480−94

doi: 10.1105/tpc.18.00547
[21]

Liu B, Jiang Y, Tang H, Tong S, Lou S, et al. 2021. The ubiquitin E3 ligase SR1 modulates the submergence response by degrading phosphorylated WRKY33 in Arabidopsis. The Plant Cell 33:1771−89

doi: 10.1093/plcell/koab062
[22]

Krishnamurthy P, Vishal B, Ho WJ, Lok FCJ, Lee FSM, Kumar PP. 2020. Regulation of a cytochrome P450 gene CYP94B1 by WRKY33 transcription factor controls apoplastic barrier formation in roots to confer salt tolerance. Plant Physiology 184:2199−215

doi: 10.1104/pp.20.01054
[23]

Abbruscato P, Nepusz T, Mizzi L, Del Corvo M, Morandini P, et al. 2012. OsWRKY22, a monocot WRKY gene, plays a role in the resistance response to blast. Molecular Plant Pathology 13:828−41

doi: 10.1111/j.1364-3703.2012.00795.x
[24]

Hsu FC, Chou MY, Chou SJ, Li YR, Peng HP, Shih MC. 2013. Submergence confers immunity mediated by the WRKY22 transcription factor in Arabidopsis. The Plant Cell 25:2699−713

doi: 10.1105/tpc.113.114447
[25]

Wang L, Chen S, Peng A, Xie Z, He Y, et al. 2019. CRISPR/Cas9-mediated editing of CsWRKY22 reduces susceptibility to Xanthomonas citri subsp. citri in Wanjincheng orange (Citrus sinensis (L.) Osbeck). Plant Biotechnology Reports 13:501−10

doi: 10.1007/s11816-019-00556-x
[26]

Long Q, Du M, Long J, Xie Y, Zhang J, et al. 2021. Transcription factor WRKY22 regulates canker susceptibility in sweet orange (Citrus sinensis Osbeck) by enhancing cell enlargement and CsLOB1 expression. Horticulture Research 8:50

doi: 10.1038/s41438-021-00486-2
[27]

Li C, Lei C, Huang Y, Zheng Y, Wang K. 2021. PpWRKY22 physically interacts with PpHOS1/PpTGA1 and positively regulates several SA-responsive PR genes to modulate disease resistance in BABA-primed peach fruit. Scientia Horticulturae 290:110479

doi: 10.1016/j.scienta.2021.110479
[28]

Wang Y, Cui Y, Liu B, Wang Y, Sun S, et al. 2022. Lilium pumilum stress-responsive NAC transcription factor LpNAC17 enhances salt stress tolerance in tobacco. Frontiers in Plant Science 13:993841

doi: 10.3389/fpls.2022.993841
[29]

Kang YI, Choi YJ, Lee YR, Seo KH, Suh JN, et al. 2021. Cut Flower Characteristics and Growth Traits under Salt Stress in Lily Cultivars. Plants 10:1435

doi: 10.3390/plants10071435
[30]

Yan H, Liu B, Cui Y, Wang Y, Sun S, et al. 2022. LpNAC6 reversely regulates the alkali tolerance and drought tolerance of Lilium pumilum. Journal of Plant Physiology 270:153635

doi: 10.1016/j.jplph.2022.153635
[31]

Xin H, Zhang H, Chen L, Li X, Lian Q, et al. 2010. Cloning and characterization of HsfA2 from Lily (Lilium longiflorum). Plant Cell Reports 29:875−85

doi: 10.1007/s00299-010-0873-1
[32]

Cao X, Yi J, Wu Z, Luo X, Zhong X, et al. 2013. Involvement of Ca2+ and CaM3 in regulation of thermotolerance in lily (Lilium longiflorum). Plant Molecular Biology Reporter 31:1293−304

doi: 10.1007/s11105-013-0587-y
[33]

Gong B, Yi J, Wu J, Sui J, Khan MA, et al. 2014. LlHSFA1, a novel heat stress transcription factor in lily (Lilium longiflorum), can interact with LlHSFA2 and enhance the thermotolerance of transgenic Arabidopsis thaliana. Plant Cell Reports 33:1519−33

doi: 10.1007/s00299-014-1635-2
[34]

Wu Z, Liang J, Wang C, Zhao X, Zhong X, et al. 2018. Overexpression of lily HsfA3s in Arabidopsis confers increased thermotolerance and salt sensitivity via alterations in proline catabolism. Journal of Experimental Botany 69:2005−21

doi: 10.1093/jxb/ery035
[35]

Zhou Y, Wang Y, Xu F, Song C, Yang X, et al. 2022. Small HSPs play an important role in crosstalk between HSF-HSP and ROS pathways in heat stress response through transcriptomic analysis in lilies (Lilium longiflorum). BMC Plant Biology 22:1−16

doi: 10.1186/s12870-021-03391-x
[36]

Ding L, Wu Z, Teng R, Xu S, Cao X, et al. 2021. LlWRKY39 is involved in thermotolerance by activating LlMBF1c and interacting with LlCaM3 in lily (Lilium longiflorum). Horticulture Research 8:36

doi: 10.1038/s41438-021-00473-7
[37]

Li T, Wu Z, Xiang J, Zhang D, Teng N. 2022. Overexpression of a novel heat-inducible ethylene-responsive factor gene LlERF110 from Lilium longiflorum decreases thermotolerance. Plant Science 319:111246

doi: 10.1016/j.plantsci.2022.111246
[38]

Wu Z, Li T, Cao X, Zhang D, Teng N. 2022. Lily WRKY factor LlWRKY22 promotes thermotolerance through autoactivation and activation of LlDREB2B. Horticulture Research 00:uhac186

doi: 10.1093/hr/uhac186
[39]

Kloth KJ, Wiegers GL, Busscher-Lange J, van Haarst JC, Kruijer W, et al. 2016. AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling. Journal of Experimental Botany 67:3383−96

doi: 10.1093/jxb/erw159
[40]

Huang T, Yu D, Wang X. 2021. VvWRKY22 transcription factor interacts with VvSnRK1.1/VvSnRK1.2 and regulates sugar accumulation in grape. Biochemical and Biophysical Research Communications 554:193−8

doi: 10.1016/j.bbrc.2021.03.092
[41]

Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, et al. 2005. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. The Plant Cell 17:268−81

doi: 10.1105/tpc.104.026971
[42]

Zhou X, Jiang Y, Yu D. 2011. WRKY22 transcription factor mediates dark-induced leaf senescence in Arabidopsis. Molecules and Cells 31:303−13

doi: 10.1007/s10059-011-0047-1
[43]

Li GZ, Wang ZQ, Yokosho K, Ding B, Fan W, et al. 2018. Transcription factor WRKY22 promotes aluminum tolerance via activation of OsFRDL4 expression and enhancement of citrate secretion in rice (Oryza sativa). New phytologist 219:149−62

doi: 10.1111/nph.15143
[44]

Wen W, Wang R, Su L, Lv A, Zhou P, An Y. 2021. MsWRKY11, activated by MsWRKY22, functions in drought tolerance and modulates lignin biosynthesis in alfalfa (Medicago sativa L. ). Environmental and Experimental Botany 184:104373

doi: 10.1016/j.envexpbot.2021.104373
[45]

Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, et al. 2006. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. The Plant Cell 18:1292−309

doi: 10.1105/tpc.105.035881
[46]

Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K. 2006. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. PNAS 103:18822−27

doi: 10.1073/pnas.0605639103
[47]

Chen H, Hwang JE, Lim CJ, Kim DY, Lee SY, Lim CO. 2010. Arabidopsis DREB2C functions as a transcriptional activator of HsfA3 during the heat stress response. Biochemical and Biophysical Research Communications 401:238−44

doi: 10.1016/j.bbrc.2010.09.038
[48]

Shahnejat-Bushehri S, Mueller-Roeber B, Balazadeh S. 2012. Arabidopsis NAC transcription factor JUNGBRUNNEN1 affects thermomemory-associated genes and enhances heat stress tolerance in primed and unprimed conditions. Plant Signaling & Behavior 7:1518−21

doi: 10.4161/psb.22092
[49]

Shahnejat-Bushehri S, Nobmann B, Devi Allu A, Balazadeh S. 2016. JUB1 suppresses Pseudomonas syringae-induced defense responses through accumulation of DELLA proteins. Plant Signaling & Behavior 11:e1181245

doi: 10.1080/15592324.2016.1181245
[50]

Wu A, Allu AD, Garapati P, Siddiqui H, Dortay H, et al. 2012. JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis. The Plant Cell 24:482−506

doi: 10.1105/tpc.111.090894
[51]

Alshareef NO, Wang JY, Ali S, Al-Babili S, Tester M, Schmöckel SM. 2019. Overexpression of the NAC transcription factor JUNGBRUNNEN1 (JUB1) increases salinity tolerance in tomato. Plant Physiology and Biochemistry 140:113−21

doi: 10.1016/j.plaphy.2019.04.038
[52]

Shahnejat-Bushehri S, Tarkowska D, Sakuraba Y, Balazadeh S. 2016. Arabidopsis NAC transcription factor JUB1 regulates GA/BR metabolism and signalling. Nature Plants 2:16013

doi: 10.1038/nplants.2016.13
[53]

Dong S, Tarkowska D, Sedaghatmehr M, Welsch M, Gupta S, et al. 2022. The HB40-JUB1 transcriptional regulatory network controls gibberellin homeostasis in Arabidopsis. Molecular Plant 15:322−39

doi: 10.1016/j.molp.2021.10.007
[54]

Stock J, Bräutigam A, Melzer M, Bienert GP, Bunk B, et al. 2020. The transcription factor WRKY22 is required during cryo-stress acclimation in Arabidopsis shoot tips. Journal of Experimental Botany 71:4993−5009

doi: 10.1093/jxb/eraa224
[55]

Liu YG, Chen Y. 2007. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. BioTechniques 43:649−56

doi: 10.2144/000112601
[56]

Wu Z, Liang J, Wang C, Ding L, Zhao X, et al. 2019. Alternative splicing provides a mechanism to regulate LlHSFA3 function in response to heat stress in lily. Plant Physiology 181:1651−67

doi: 10.1104/pp.19.00839