[1]

Ahmad S, Yuan CQ, Yang QQ, Yang YJ, Cheng TR, et al. 2020. Morpho-physiological integrators, transcriptome and coexpression network analyses signify the novel molecular signatures associated with axillary bud in chrysanthemum. BMC Plant Biology 20:145

doi: 10.1186/s12870-020-02336-0
[2]

Lu CF, Pu Y, Liu YT, Li YJ, Qu JP, et al. 2019. Comparative transcriptomics and weighted gene co-expression correlation network analysis (WGCNA) reveal potential regulation mechanism of carotenoid accumulation in Chrysanthemum × morifolium. Plant Physiology and Biochemistry 142:415−28

doi: 10.1016/j.plaphy.2019.07.023
[3]

Park CH, Chae SC, Park SY, Kim JK, Kim YJ, et al. 2015. Anthocyanin and carotenoid contents in different cultivars of chrysanthemum (Dendranthema grandiflorum Ramat.) flower. Molecules 20:11090−102

doi: 10.3390/molecules200611090
[4]

Grotewold E (ed.). 2006. The Science of Flavonoids. New York: Springer. https://doi.org/10.1007/978-0-387-28822-2

[5]

Xue H, Liu M, Zhang CH, Pan Y. 2002. Progress in molecular breeding of ornametal plants. Progress in Bioengineering 22:81−84,80

doi: 10.13523/j.cb.20020216
[6]

Chen SM, Li CH, Zhu XR, Deng YM, Sun W, et al. 2012. The identification of flavonoids and the expression of genes of anthocyanin biosynthesis in the chrysanthemum flowers. Biologia Plantarum 56:458−64

doi: 10.1007/s10535-012-0069-3
[7]

Mekapogu M, Vasamsetti BMK, Kwon OK, Ahn MS, Lim SH, et al. 2020. Anthocyanins in floral colors: Biosynthesis and regulation in chrysanthemum flowers. International Journal of Molecular Sciences 21:6537

doi: 10.3390/ijms21186537
[8]

Tanaka Y, Sasaki N, Ohmiya A. 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal 54:733−49

doi: 10.1111/j.1365-313X.2008.03447.x
[9]

Zhang Y, Butelli E, Martin C. 2014. Engineering anthocyanin biosynthesis in plants. Current Opinion in Plant Biology 19:81−90

doi: 10.1016/j.pbi.2014.05.011
[10]

Kawase K, Tsukamoto Y. 1976. Studies on flower color in Chrysanthemum morifolium Ramat. III. Quantitative effects of major pigments on flower color variation, and measurement of color qualities of petals with a color difference meter. Journal of the Japanese Society for Horticultural Science 45:65−75

doi: 10.2503/jjshs.45.65
[11]

Holton TA, Cornish EC. 1995. Genetics and biochemistry of anthocyanin biosynthesis. The Plant Cell 7:1071−83

doi: 10.2307/3870058
[12]

Liu Y, Tikunov Y, Schouten RE, Marcelis LFM, Visser RGF, et al. 2018. Anthocyanin biosynthesis and degradation mechanisms in Solanaceous vegetables: a review. Frontiers in Chemistry 6:52

doi: 10.3389/fchem.2018.00052
[13]

Robinson GM, Robinson R. 1932. A survey of anthocyanins. II. Biochemical Journal 26:1647−64

doi: 10.1042/bj0261647
[14]

Seeram NP, Momin RA, Nair MG, Bourquin LD. 2001. Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries. Phytomedicine 8:362−69

doi: 10.1078/0944-7113-00053
[15]

Nisar N, Li L, Lu S, Khin NC, Pogson BJ. 2015. Carotenoid metabolism in plants. Molecular Plant 8:68−82

doi: 10.1016/j.molp.2014.12.007
[16]

Bruno M, Hofmann M, Vermathen M, Alder A, Beyer P, et al. 2014. On the substrate-and stereospecificity of the plant carotenoid cleavage dioxygenase 7. FEBS Letters 588:1802−7

doi: 10.1016/j.febslet.2014.03.041
[17]

Li L, Yuan H. 2013. Chromoplast biogenesis and carotenoid accumulation. Archives of Biochemistry and Biophysics 539:102−9

doi: 10.1016/j.abb.2013.07.002
[18]

Lu S, van Eck J, Zhou XJ, Lopez AB, O'Halloran DM, et al. 2006. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of β-carotene accumulation. The Plant Cell 18:3594−605

doi: 10.1105/tpc.106.046417
[19]

Fu XM, Kong WB, Peng G, Zhou JY, Azam M, et al. 2012. Plastid structure and carotenogenic gene expression in red- and white-fleshed loquat (Eriobotrya japonica) fruits. Journal of Experimental Botany 63:341−54

doi: 10.1093/jxb/err284
[20]

Zeng YL, Du JB, Wang L, Pan ZY, Xu Q, et al. 2015. A comprehensive analysis of chromoplast differentiation reveals complex protein changes associated with plastoglobule biogenesis and remodeling of protein systems in sweet orange flesh. Plant Physiology 168:1648−65

doi: 10.1104/pp.15.00645
[21]

Kilambi HV, Manda K, Rai A, Charakana C, Bagri J, et al. 2017. Green-fruited Solanum habrochaites lacks fruit-specific carotenogenesis due to metabolic and structural blocks. Journal of Experimental Botany 68:4803−19

doi: 10.1093/jxb/erx288
[22]

Rey P, Gillet B, Römer S, Eymery F, Massimino J, et al. 2000. Over-expression of a pepper plastid lipid-associated protein in tobacco leads to changes in plastid ultrastructure and plant development upon stress. The Plant Journal 21:483−94

doi: 10.1046/j.1365-313x.2000.00699.x
[23]

Simkin AJ, Gaffé J, Alcaraz JP, Carde JP, Bramley PM, et al. 2007. Fibrillin influence on plastid ultrastructure and pigment content in tomato fruit. Phytochemistry 68:1545−56

doi: 10.1016/j.phytochem.2007.03.014
[24]

Ahmad S, Chen JL, Chen GZ, Huang J, Zhou YZ, et al. 2022. Why black flowers? An extreme environment and molecular perspective of black color accumulation in the ornamental and food crops Frontiers in Plant Science 13:885176

doi: 10.3389/fpls.2022.885176
[25]

Feller A, Machemer K, Braun EL, Grotewold E. 2021. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. The Plant Journal 66:94−116

doi: 10.1111/j.1365-313x.2010.04459.x
[26]

Koes R, Verweij W, Quattrocchio F. 2005. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science 10:236−42

doi: 10.1016/j.tplants.2005.03.002
[27]

Petroni K, Tonelli C. 2011. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Science 181:219−29

doi: 10.1016/j.plantsci.2011.05.009
[28]

Hernandez JM, Heine GF, Irani NG, Feller A, Kim MG, et al. 2004. Different mechanisms participate in the R-dependent activity of the R2R3 MYB transcription factor C1. Journal of Biological Chemistry 279:48205−13

doi: 10.1074/jbc.M407845200
[29]

Zhang F, Gonzalez A, Zhao M, Payne CT, Lloyd A. 2003. A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130:4859

doi: 10.1242/dev.00681
[30]

Gonzalez A, Zhao M, Leavitt JM, Lloyd AM. 2008. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. The Plant Journal 53:814−27

doi: 10.1111/j.1365-313x.2007.03373.x
[31]

Sun W, Li CH, Wang LS, Dai SL. 2010. Analysis of anthocyanins and flavones in different-colored flowers of chrysanthemum. Chinese Bulletin of Botany 45:327

[32]

Dixon RA, Steele CL. 1999. Flavonoids and isoflavonoids – a gold mine for metabolic engineering. Trends in Plant Science 4:394−400

doi: 10.1016/S1360-1385(99)01471-5
[33]

Forkmann G, Martens S. 2001. Metabolic engineering and applications of flavonoids. Current Opinion in Biotechnology 12:155−60

doi: 10.1016/S0958-1669(00)00192-0
[34]

Rothenberg DO, Yang HJ, Chen MB, Zhang WT, Zhang LY. 2019. Metabolome and transcriptome sequencing analysis reveals anthocyanin metabolism in pink flowers of anthocyanin-rich tea (Camellia sinensis). Molecules 24:1064

doi: 10.3390/molecules24061064
[35]

Stavenga DG, Leertouwer HL, Dudek B, van der Kooi CJ. 2020. Coloration of flowers by flavonoids and consequences of pH dependent absorption. Frontiers in Plant Science 11:600124

doi: 10.3389/fpls.2020.600124
[36]

Wang ZW, Jiang C, Wen Q, Wang N, Tao YY, et al. 2014. Deep sequencing of the Camellia chekiangoleosa transcriptome revealed candidate genes for anthocyanin biosynthesis. Gene 538:1−7

doi: 10.1016/j.gene.2014.01.035
[37]

Zhu CF, Yamamura S, Koiwa H, Nishihara M, Sandmann G. 2002. cDNA cloning and expression of carotenogenic genes during flower development in Gentiana lutea. Plant molecular biology 48:277−85

doi: 10.1023/a:1013383120392(2002
[38]

Zhu CF, Yamamura S, Nishihara M, Koiwa H, Sandmann G. 2003. cDNAs for the synthesis of cyclic carotenoids in petals of Gentiana lutea and their regulation during flower development. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression 1625:305−8

doi: 10.1016/S0167-4781(03)00017-4
[39]

Berman J, Sheng YM, Gómez Gómez L, Veiga T, Ni XZ, et al. 2016. Red anthocyanins and yellow carotenoids form the color of orange-flower gentian (Gentiana lutea L. var. aurantiaca). PLoS One 11:e0162410

doi: 10.1371/journal.pone.0162410
[40]

Moehs CP, Tian L, Osteryoung KW, Dellapenna D. 2001. Analysis of carotenoid biosynthetic gene expression during marigold petal development. Plant Molecular Biology 45:281−93

doi: 10.1023/A:1006417009203
[41]

Zhu CF, Bai C, Sanahuja G, Yuan DW, Farré G, et al. 2010. The regulation of carotenoid pigmentation in flowers. Archives of Biochemistry and Biophysics 504:132−41

doi: 10.1016/j.abb.2010.07.028
[42]

Kishimoto S, Maoka T, Nakayama M, Ohmiya A. 2004. Carotenoid composition in petals of chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura). Phytochemistry 65:2781−87

doi: 10.1016/j.phytochem.2004.08.038
[43]

Yamamizo C, Kishimoto S, Ohmiya A. 2010. Carotenoid composition and carotenogenic gene expression during Ipomoea petal development. Journal of Experimental Botany 61:709−19

doi: 10.1093/jxb/erp335
[44]

Ohmiya A, Sumitomo K, Aida R. 2009. "Yellow Jimba": suppression of carotenoid cleavage dioxygenase (CmCCD4a) expression turns white chrysanthemum petals yellow. Journal of the Japanese Society for Horticultural Science 78:450−55

doi: 10.2503/jjshs1.78.450
[45]

Forkmann G, Ruhnau B. 1987. Distinct substrate specificity of dihydroflavonol 4-reductase from flowers of Petunia hybrida. Zeitschrift für Naturforschung C 42:1146−48

doi: 10.1515/znc-1987-9-1026
[46]

Johnson ET, Yi H, Shin B, Oh BJ, Cheong H, et al. 1999. Cymbidium hybrida dihydroflavonol 4-reductase does not efficiently reduce dihydrokaempferol to produce orange pelargonidin-type anthocyanins. The Plant Journal 19:81−85

doi: 10.1046/j.1365-313X.1999.00502.x
[47]

Guo LP, Wang YJ, da Silva JAT, Fan YM, Yu XN. 2019. Transcriptome and chemical analysis reveal putative genes involved in flower color change in Paeonia 'Coral Sunset'. Plant Physiology and Biochemistry 138:130−39

doi: 10.1016/j.plaphy.2019.02.025
[48]

Liu YH, Wang KL, Espley RV, Wang L, Li YM, et al. 2019. StMYB44 negatively regulates anthocyanin biosynthesis at high temperatures in tuber flesh of potato. Journal of Experimental Botany 70:3809−24

doi: 10.1093/jxb/erz194
[49]

Jia N, Wang JJ, Wang YJ, Ye W, Liu JM, et al. 2021. The light-induced WD40-repeat transcription factor DcTTG1 regulates anthocyanin biosynthesis in Dendrobium candidum. Frontiers in Plant Science 12:633333

doi: 10.3389/fpls.2021.633333
[50]

Zhang SM, Zhang AD, Wu XX, Zhu ZW, Yang ZF, et al. 2019. Transcriptome analysis revealed expression of genes related to anthocyanin biosynthesis in eggplant (Solanum melongena L.) under high-temperature stress. BMC Plant Biology 19:387

doi: 10.1186/s12870-019-1960-2
[51]

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature biotechnology 29:644−52

doi: 10.1038/nbt.1883