[1] |
Liu Z, Korpelainen H. 2018. Improved characterization of Clematis based on new chloroplast microsatellite markers and nuclear ITS sequences. Horticulture, Environment and Biotechnology 59:889−97 doi: 10.1007/s13580-018-0090-3 |
[2] |
Li L , Ma Y , Gao L , Wang S, Wang P, et al. 2018. Association analysis of heat-resistance traits in Clematis. European Journal of Horticultural Science 83:151−59 doi: 10.17660/ejhs.2018/83.3.4 |
[3] |
Ma Y. 2016. Heat resistance evaluation and association mapping in Clematis. Thesis. Institute of Botany, Jiangsu Province and Chinese Academy of Science. pp.44-47 |
[4] |
Zhang X, Rerksiri W, Liu A, Zhou X, Xiong H, et al. 2013. Transcriptome profile reveals heat response mechanism at molecular and metabolic levels in rice flag leaf. Gene 530:185−92 doi: 10.1016/j.gene.2013.08.048 |
[5] |
Li YF, Wang Y, Tang Y, Kakani VG, Mahalingam R. 2013. Transcriptome analysis of heat stress response in switchgrass (Panicum virgatum L.). BMC Plant Biology 13:153 doi: 10.1186/1471-2229-13-153 |
[6] |
Xu J, Zheng Y, Pu S, Zhang X, Li Z, et al. 2020. Third-generation sequencing found LncRNA associated with heat shock protein response to heat stress in Populus qiongdaoensis seedlings. BMC Genomics 21:572 doi: 10.1186/s12864-020-06979-z |
[7] |
Gao L, Ma Y, Wang P, Wang S, Yang R, et al. 2017. Transcriptome profiling of Clematis apiifolia: Insights into heat-stress responses. DNA and Cell Biology 36:938−46 doi: 10.1089/dna.2017.3850 |
[8] |
Fang C, Dou L, Liu Y, Yu J, Tu J. 2018. Heat stress-responsive transcriptome analysis in heat susceptible and tolerant rice by high-throughput sequencing. Ecological Genetics and Genomics 6:33−40 doi: 10.1016/j.egg.2017.12.001 |
[9] |
Ron M, Andrija F, Pierre G. 2012. How do plants feel the heat. Trends in Biochemical Sciences 37:118−25 doi: 10.1016/j.tibs.2011.11.007 |
[10] |
Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, et al. 2007. Complexity of the heat stress response in plants. Current Opinion in Plant Biology 10:310−16 doi: 10.1016/j.pbi.2007.04.011 |
[11] |
Wahid A, Gelani S, Ashraf M, Foolad MR. 2007. Heat tolerance in plants: An overview. Environmental and Experimental Botany 61:199−223 doi: 10.1016/j.envexpbot.2007.05.011 |
[12] |
Weber C, Nover L, Fauth M. 2008. Plant stress granules and mRNA processing bodies are distinct from heat stress granules. The Plant Journal 56:517−30 doi: 10.1111/j.1365-313x.2008.03623.x |
[13] |
Miroshnichenko S, Tripp J, Nieden UZ, Neumann D, Conrad U, et al. 2005. Immunomodulation of function of small heat shock proteins prevents their assembly into heat stress granules and results in cell death at sublethal temperatures. The Plant Journal 41:269−81 doi: 10.1111/j.1365-313x.2004.02290.x |
[14] |
Buchan JR, Parker R. 2009. Eukaryotic stress granules: The ins and outs of translation. Molecular Cell 36:932−41 doi: 10.1016/j.molcel.2009.11.020 |
[15] |
Schlatter H, Langer T, Rosmus S, Onneken ML, Fasold H. 2002. A novel function for the 90 kDa heat-shock protein (Hsp90): Facilitating nuclear export of 60 S ribosomal subunits. The Biochemical Journal 362:675−84 doi: 10.1042/bj3620675 |
[16] |
Cornivelli L, Zeidan Q, De Maio A. 2003. HSP70 interacts with ribosomal subunits of thermotolerant cells. Shock 20:320−25 doi: 10.1097/01.shk.0000082443.66379.d9 |
[17] |
Qu A, Ding Y, Jiang Q, Zhu C. 2013. Molecular mechanisms of the plant heat stress response. Biochemical and Biophysical Research Communications 432:203−7 doi: 10.1016/j.bbrc.2013.01.104 |
[18] |
Liu H, Sun D, Zhou R. 2005. Ca2+ and AtCaM3 are involved in the expression of heat shock protein gene in Arabidopsis. Plant, Cell and Environment 28:1276−84 doi: 10.1111/j.1365-3040.2005.01365.x |
[19] |
Liu H, Liu Y, Pan Q, Yang H, Zhan J, et al. 2006. Novel interrelationship between salicylic acid, abscisic acid, and PIP2-specific phospholipase C in heat acclimation-induced thermotolerance in pea leaves. Journal of Experimental Botany 57:3337−47 doi: 10.1093/jxb/erl098 |
[20] |
Yu H, Yang X, Chen S, Wang Y, Li J, et al. 2012. Downregulation of chloroplast RPS1 negatively modulates nuclear heat-responsive expression of HsfA2 and its target genes in Arabidopsis. Plos Genetics 8:e1002669 doi: 10.1371/journal.pgen.1002669 |
[21] |
Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K. 2017. Transcriptional regulatory network of plant heat stress response. Trends in Plant Science 22:53−65 doi: 10.1016/j.tplants.2016.08.015 |
[22] |
Anderson P, Kedersha N. 2009. RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nature Reviews Molecular Cell Biology 10:430−36 doi: 10.1038/nrm2694 |
[23] |
Tian S, Curnutte HA, Trcek T. 2020. RNA granules: A view from the RNA perspective. Molecules 25:3130 doi: 10.3390/molecules25143130 |
[24] |
Hsu YW, Juan CT, Wang CM, Jauh GY. 2019. Mitochondrial heat shock protein 60s interact with what's this factor 9 to regulate RNA splicing of ccmF C and rpl2. Plant and Cell Physiology 60:116−25 doi: 10.1093/pcp/pcy199 |
[25] |
Lyubetsky VA, Zverkov OA, Rubanov LI, Seliverstov AV. 2011. Modeling RNA polymerase competition: The effect of σ-subunit knockout and heat shock on gene transcription level. Biology Direct 6:3 doi: 10.1186/1745-6150-6-3 |
[26] |
Tang X, Sun M, Lu M, Du Y. 2015. Expression patterns of five heat shock proteins in Sesamia inferens (Lepidoptera: Noctuidae) during heat stress. Journal of Asia-Pacific Entomology 18:529−33 doi: 10.1016/j.aspen.2015.07.005 |
[27] |
Hinz M, Wilson IW, Yang J, Buerstenbinder K, Llewellyn D, et al. 2010. Arabidopsis RAP2.2: an ethylene response transcription factor that is important for hypoxia survival. Plant Physiology 153:757−72 doi: 10.1104/pp.110.155077 |
[28] |
Yang G, Peng S, Wang T, Gao X, Li D, et al. 2021. Walnut ethylene response factor JrERF2-2 interact with JrWRKY7 to regulate the GSTs in plant drought tolerance. Ecotoxicology and Environmental Safety 228:112945 doi: 10.1016/j.ecoenv.2021.112945 |
[29] |
Pan Y, Seymour GB, Lu C, Hu Z, Chen X, et al. 2012. An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Plant Cell Reports 31:349−60 doi: 10.1007/s00299-011-1170-3 |
[30] |
Dao TTH, Linthorst HJM, Verpoorte R. 2011. Chalcone synthase and its functions in plant resistance. Phytochemistry Reviews 10:397 doi: 10.1007/s11101-011-9211-7 |
[31] |
Zhang X, Han X, Shi R, Yang G, Qi L, et al. 2013. Arabidopsis cysteine-rich receptor-like kinase 45 positively regulates disease resistance to Pseudomonas syringae. Plant Physiology and Biochemistry 73:383−91 doi: 10.1016/j.plaphy.2013.10.024 |
[32] |
Yang K, Rong W, Qi L, Li J, Wei X, et al. 2013. Isolation and characterization of a novel wheat cysteine-rich receptor-like kinase gene induced by Rhizoctonia cerealis. Scientific Reports 3:3021 doi: 10.1038/srep03021 |
[33] |
Yao X, Xiong W, Ye T, Wu Y. 2012. Overexpression of the aspartic protease ASPG1 gene confers drought avoidance in Arabidopsis. Journal of Experimental Botany 63:2579−93 doi: 10.1093/jxb/err433 |
[34] |
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29:644−52 doi: 10.1038/nbt.1883 |
[35] |
Anders S, Pyl PT, Huber W. 2015. Htseq—A python framework to work with high-throughput sequencing data. Bioinformatics 31:166−69 doi: 10.1093/bioinformatics/btu638 |
[36] |
Love MI, Huber W, Anders S . 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550 doi: 10.1186/s13059-014-0550-8 |
[37] |
Ye J, Fang L, Zheng H, Zhang Y, Chen J, et al. 2006. WEGO: a web tool for plotting GO annotations. Nucleic Acids Research 34:W293−W297 doi: 10.1093/nar/gkl031 |
[38] |
Mao X, Cai T, Olyarchuk JG, Wei L. 2005. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21:3787−93 doi: 10.1093/bioinformatics/bti430 |
[39] |
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, et al. 2008. KEGG for linking genomes to life and the environment. Nucleic Acids Research 36:D480−D484 doi: 10.1093/nar/gkm882 |
[40] |
Xie C, Mao X, Huang J, Ding Y, Wu J, et al. 2011. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Research 39:316−22 doi: 10.1093/nar/gkr483 |