[1]

Duvick DN. 1984. Genetic contributions to yield gains of U. S. hybrid maize, 1930 to 1980. In Genetic Contributions to Yield Gains of Five Major Crop Plants, ed. Fehr WR. Vol. 7. Madison, WI: American Society of Agronomy and Crop Science Society of America. pp. 15−47 https://doi.org/10.2135/cssaspecpub7.c2

[2]

Cardwell VB. 1982. Fifty years of Minnesota corn production: Sources of yield increase. Agronomy Journal 74:984−90

doi: 10.2134/agronj1982.00021962007400060013x
[3]

Lee EA, Tollenaar M. 2007. Physiological basis of successful breeding strategies for maize grain yield. Crop Science 47:S202−S215

doi: 10.2135/cropsci2007.04.0010ipbs
[4]

Duvick DN. 2005. Genetic progress in yield of United States maize (Zea mays L.). Maydica 50:193−202

[5]

Li Y, Ma X, Wang T, Li Y, Liu C, et al. 2011. Increasing maize productivity in China by planting hybrids with germplasm that responds favorably to higher planting densities. Crop Science 51:2391−400

doi: 10.2135/cropsci2011.03.0148
[6]

Li S, Wang C. 2009. Evolution and development of maize production techniques in China. Scientia Agricultura Sinica 42:1941−51

doi: 10.3864/j.issn.0578-1752.2009.06.009
[7]

Duvick DN. 2005. The contribution of breeding to yield advances in maize (Zea mays L.). In Advances in Agronomy, ed. Sparks DL. San Diego: Elsevier Academic Press. pp. 83−145 https://doi.org/10.1016/S0065-2113(05)86002-X

[8]

Tollenaar M. 1989. Genetic improvement in grain yield of commercial maize hybrids grown in Ontario from 1959 to 1988. Crop Science 29:1365−71

doi: 10.2135/cropsci1989.0011183x002900060007x
[9]

Hammer GL, Dong Z, McLean G, Doherty A, Messina C, et al. 2009. Can changes in canopy and/or root system architecture explain historical maize yield trends in the U. S. Corn Belt? Crop Science 49:299−312

doi: 10.2135/cropsci2008.03.0152
[10]

Echarte L, Luque S, Andrade FH, Sadras VO, Cirilo A, et al. 2000. Response of maize kernel number to plant density in Argentinean hybrids released between 1965 and 1993. Field Crops Research 68:1−8

doi: 10.1016/S0378-4290(00)00101-5
[11]

Sangoi L, Gracietti MA, Rampazzo C, Bianchetti P. 2002. Response of Brazilian maize hybrids from different eras to changes in plant density. Field Crops Research 79:39−51

doi: 10.1016/S0378-4290(02)00124-7
[12]

Tollenaar M, Lee EA. 2002. Yield potential, yield stability and stress tolerance in maize. Field Crops Research 75:161−69

doi: 10.1016/S0378-4290(02)00024-2
[13]

Luque SF, Cirilo AG, Otegui ME. 2006. Genetic gains in grain yield and related physiological attributes in Argentine maize hybrids. Field Crops Research 95:383−97

doi: 10.1016/j.fcr.2005.04.007
[14]

Li C, Zhao M, Liu P, Zhang J, Yang J, et al. 2013. Responses of Main Traits of Maize Hybrids and Their Parents to Density in Different Eras of China. Scientia Agricultura Sinica 46:2421−29

doi: 10.3864/j.issn.0578-1752.2013.12.003
[15]

Qin X, Feng F, Li Y, Xu S, Siddique KHM, et al. 2016. Maize yield improvements in China: past trends and future directions. Plant Breeding 135:166−76

doi: 10.1111/pbr.12347
[16]

Ming B, Xie R, Hou P, Li L, Wang K, et al. 2017. Changes of Maize Planting Density in China. Scientia Agricultura Sinica 50:1960−72

doi: 10.3864/j.issn.0578-1752.2017.11.002
[17]

Comstock RE, Moll RH. 1963. Genotype-environment interactions. In Statistical genetics and plant breeding, eds. Hanson WD, Robinson HF. Washington, D.C.: National Academy of Science − National Research Council. pp. 164−96

[18]

Anandaraj M, Prasath D, Kandiannan K, Zachariah TJ, Srinivasan V, et al. 2014. Genotype by environment interaction effects on yield and curcumin in turmeric (Curcuma longa L.). Ind Crops Prod 53:358−64

doi: 10.1016/j.indcrop.2014.01.005
[19]

Dia M, Wehner TC, Arellano C. 2016. Analysis of genotype × environment interaction (G×E) using SAS programming. Agronomy Journal 108:1838−52

doi: 10.2134/agronj2016.02.0085
[20]

Owusu GA, Nyadanu D, Owusu-Mensah P, Adu Amoah R, Amissah S, et al. 2018. Determining the effect of genotype × environment interactions on grain yield and stability of hybrid maize cultivars under multiple environments in Ghana. Ecological Genetics and Genomics 9:7−15

doi: 10.1016/j.egg.2018.07.002
[21]

Yan W, Hunt LA, Sheng Q, Szlavnics Z. 2000. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Science 40:596−605

doi: 10.2135/cropsci2000.403597x
[22]

Wu L, Wang J, Liu H, Sun X. 2010. Spatiotemporal Variation of Solar Radiation and Sunshine Hours in Shaanxi Province. Bulletin of Soil and Water Conservation 30:212−14

[23]

Mansfield BD, Mumm RH. 2014. Survey of plant density tolerance in US maize germplasm. Crop Science 54:153−73

doi: 10.2135/cropsci2013.04.0252
[24]

Assefa Y, Carter P, Hinds M, Bhalla G, Schon R, et al. 2018. Analysis of long term study indicates both agronomic optimal plant density and increase maize yield per plant contributed to yield gain. Scientific Reports 8:4937

doi: 10.1038/s41598-018-23362-x
[25]

Li S, Wang C. 2008. Analysis on change of production and factors promoting yield increase of corn in China. Journal of Maize Science 16:26−30

[26]

Hou J, Luo N, Wang S, Meng Q, Wang P. 2021. Effects of increasing planting density on grain yield, leaf area index and photosynthetic rate of maize in China. Scientia Agricultura Sinica 54:2538−46

doi: 10.3864/j.issn.0578-1752.2021.12.005
[27]

Qian C, Yu Y, Gong X, Jiang Y, Zhao Y, et al. 2016. Response of grain yield to plant density and nitrogen rate in spring maize hybrids released from 1970 to 2010 in Northeast China. The Crop Journal 4:459−67

doi: 10.1016/j.cj.2016.04.004
[28]

Widdicombe WD, Thelen KD. 2002. Row width and plant density effects on corn grain production in the Northern Corn Belt. Agronomy Journal 94:1020−23

doi: 10.2134/agronj2002.1020
[29]

Du X, Wang Z, Lei W, Kong L. 2021. Increased planting density combined with reduced nitrogen rate to achieve high yield in maize. Scientific Report 11:358

doi: 10.1038/s41598-020-79633-z
[30]

Fan X, Kang MS, Chen H, Zhang Y, Tan J, et al. 2007. Yield stability of maize hybrids evaluated in multi-environment trials in Yunnan, China. Agronomy Journal 99:220−23

doi: 10.2134/agronj2006.0144
[31]

Ndhlela T, Herselman L, Magorokosho C, Setimela P, Mutimaamba C, et al. 2014. Genotype × Environment Interaction of Maize Grain Yield Using AMMI Biplots. Crop Science 54:1992−99

doi: 10.2135/cropsci2013.07.0448
[32]

Wang T, Ma X, Li Y, Bai D, Liu C, et al. 2011. Changes in Yield and Yield Components of Single-Cross Maize Hybrids Released in China between 1964 and 2001. Crop Science 51:512−25

doi: 10.2135/cropsci2010.06.0383
[33]

Gandhi VP, Zhou Z. 2014. Food demand and the food security challenge with rapid economic growth in the emerging economies of India and China. Food Research International 63:108−24

doi: 10.1016/j.foodres.2014.03.015
[34]

Rezende WS, Beyene Y, Mugo S, Ndou E, Gowda M, et al. 2020. Performance and yield stability of maize hybrids in stress-prone environments in eastern Africa. The Crop Journal 8:107−18

doi: 10.1016/j.cj.2019.08.001
[35]

Mastrodomenico AT, Haegele JW, Seebauer JR, Below FE. 2018. Yield stability differs in commercial maize hybrids in response to changes in plant density, nitrogen fertility, and environment. Crop Science 58:230−41

doi: 10.2135/cropsci2017.06.0340
[36]

Yan W. 2015. Crop variety test data management and analysis. China Agricultural Science and Technology Press