[1] |
Li Q, Wang J, Sun H, Shang X. 2014. Flower color patterning in pansy (Viola ×wittrockiana Gams.) is caused by the differential expression of three genes from the anthocyanin pathway in acyanic and cyanic flower areas. Plant Physiology and Biochemistry 84:134−41 doi: 10.1016/j.plaphy.2014.09.012 |
[2] |
Endo T. 1959. Biochemical and Genetical Investigations of Flower Color in Swiss Giant Pansy, Viola × Wittrockiana Gams. III. The Japanese journal of genetics 34:116−24 doi: 10.1266/jjg.34.116 |
[3] |
Henry-Kirk RA, Plunkett B, Hall M, McGhie T, Allan AC, et al. 2018. Solar UV light regulates flavonoid metabolism in apple (Malus ×domestica). Plant, Cell & Environment 41:675−88 doi: 10.1111/pce.13125 |
[4] |
Hsu CC, Chen HH. 2017. Flower Color and Pigmentation Patterns in Phalaenopsis Orchids: Orchid Biotechnology III. pp: 393−420 |
[5] |
Winkel-Shirley B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology 126:485−493 doi: 10.1104/pp.126.2.485 |
[6] |
Li L, Ye J, Li H, Shi Q. 2020. Characterization of Metabolites and Transcripts Involved in Flower Pigmentation in Primula vulgaris. Frontiers in Plant Science 11:572517 doi: 10.3389/fpls.2020.572517 |
[7] |
Gu Z, Zhu J, Hao Q, Yuan YW, Duan YW, et al. 2019. A novel R2R3-MYB transcription factor contributes to petal blotch formation by regulating organ-specific expression of PsCHS in tree peony (Paeonia suffruticosa). Plant and Cell Physiology 60:599−611 doi: 10.1093/pcp/pcy232 |
[8] |
Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, et al. 2007. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. The Plant Journal 50:660−77 doi: 10.1111/j.1365-313X.2007.03078.x |
[9] |
Shan X, Zhang Y, Peng W, Wang Z, Xie D. 2009. Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis. Journal of Experimental Botany 60:3849−60 doi: 10.1093/jxb/erp223 |
[10] |
Deikman J, Hammer PE. 1995. Induction of Anthocyanin Accumulation by Cytokinins in Arabidopsis thaliana. Plant Physiology 108:47−57 doi: 10.1104/pp.108.1.47 |
[11] |
El-Kereamy A, Chervin C, Roustan JP, Cheynier V, Souquet JM, et al. 2010. Exogenous ethylene stimulates the long-term expression of genes related to anthocyanin biosynthesis in grape berries. Physiologia Plantarum 119:175−82 doi: 10.1034/j.1399-3054.2003.00165.x |
[12] |
Peng Z, Han C, Yuan L, Zhang K, Huang H, et al. 2011. Brassinosteroid enhances jasmonate-induced anthocyanin accumulation in Arabidopsis seedlings. Journal of Integrative Plant Biology 53:632−640 doi: 10.1111/j.1744-7909.2011.01042.x |
[13] |
Loreti E, Povero G, Novi G, Solfanelli C, Alpi A, et al. 2008. Gibberellins, jasmonate and abscisic acid modulate the sucrose-induced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytologist 179:1004−16 doi: 10.1111/j.1469-8137.2008.02511.x |
[14] |
Li G, Zhao J, Qin B, Yin Y, An W, et al. 2019. ABA mediates development-dependent anthocyanin biosynthesis and fruit coloration in Lycium plants. BMC Plant Biology 19:317 doi: 10.1186/s12870-019-1931-7 |
[15] |
An J, Yao J, Xu R, You C, Wang X, et al. 2018. Apple bZIP transcription factor MdbZIP44 regulates abscisic acid-promoted anthocyanin accumulation. Plant, Cell & Environment 41:2678−92 doi: 10.1111/pce.13393 |
[16] |
Polturak G, Grossman N, Vela-Corcia D, Dong Y, Nudel A, et al. 2017. Engineered gray mold resistance, antioxidant capacity, and pigmentation in betalain-producing crops and ornamentals. PNAS 114:9062−67 doi: 10.1073/pnas.1707176114 |
[17] |
Zha J, Koffas MAG. 2017. Production of anthocyanins in metabolically engineered microorganisms: Current status and perspectives. Synthetic and Systems Biotechnology 2:259−66 doi: 10.1016/j.synbio.2017.10.005 |
[18] |
Zhou Z, Zhi T, Liu Y, Chen Y, Ren C. 2014. Tyrosine Induces Anthocyanin Biosynthesis in Arabidopsis thaliana. American Journal of Plant Sciences 5:328−31 doi: 10.4236/ajps.2014.53045 |
[19] |
Yang W, Peng T, Li T, Cen J, Wang J. 2018. Tyramine and tyrosine decarboxylase gene contributes to the formation of cyanic blotches in the petals of pansy (Viola × wittrockiana). Plant Physiology and Biochemistry 127:269−75 doi: 10.1016/j.plaphy.2018.03.024 |
[20] |
Li R, Yu C, Li Y, Lam TW, Yiu SM, et al. 2009. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966−67 doi: 10.1093/bioinformatics/btp336 |
[21] |
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29:644−52 doi: 10.1038/nbt.1883 |
[22] |
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature methods 5:621−28 doi: 10.1038/nmeth.1226 |
[23] |
Iseli C, Jongeneel CV, Bucher P. 1999. ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proceedings of International Conference on Intelligent Systems for Molecular Biology, Heidelberg, 1999. pp: 138-48. |
[24] |
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, et al. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674−76 doi: 10.1093/bioinformatics/bti610 |
[25] |
Ye J, Fang L, Zheng H, Zhang Y, Chen J, et al. 2006. WEGO: a web tool for plotting GO annotations. Nucleic Acids Research 34:W293−W297 doi: 10.1093/nar/gkl031 |
[26] |
Willems E, Leyns L, Vandesompele J. 2008. Standardization of real-time PCR gene expression data from independent biological replicates. Analytical Biochemistry 379:127−29 doi: 10.1016/j.ab.2008.04.036 |
[27] |
Chen H, Zhang J, Neff MM, Hong SW, Zhang H, et al. 2008. Integration of light and abscisic acid signaling during seed germination and early seedling development. PNAS 105:4495−500 doi: 10.1073/pnas.0710778105 |
[28] |
Ma Q, Li H, Zou Z, Arkorful E, Lv Q, et al. 2018. Transcriptomic analyses identify albino-associated genes of a novel albino tea germplasm 'Huabai 1'. Horticulture Research 5:54 doi: 10.1038/s41438-018-0053-y |
[29] |
Hsieh MH, Pan ZJ, Lai PH, Lu HC, Yeh HH, et al. 2013. Virus-induced gene silencing unravels multiple transcription factors involved in floral growth and development in Phalaenopsis orchids. Journal of Experimental Botany 64:3869−84 doi: 10.1093/jxb/ert218 |
[30] |
Chen Z. 2017. Establishment of Virus-induced Gene Silencing (VIGS) in Gerbera jamesonii ‘Hualong’ and Its Application in Gene Functional Analysis. Thesis. South China Agricultural University, China. pp. 61−62 |
[31] |
Zhang J, Wang LS, Gao JM, Xu YJ, Li LF, et al. 2012. Rapid separation and identification of anthocyanins from flowers of Viola yedoensis and V. prionantha by high-performance liquid chromatography−photodiode array detection−electrospray ionisation mass spectrometry. Phytochemical Analysis 23:16−22 doi: 10.1002/pca.1320 |
[32] |
Li G, Qin B, Li S, Yin Y, Zhao J, et al. 2020. LbNR-Derived Nitric Oxide Delays Lycium Fruit Coloration by Transcriptionally Modifying Flavonoid Biosynthetic Pathway. Frontiers in Plant Science 11:1215 doi: 10.3389/fpls.2020.01215 |
[33] |
Samkumar A, Jones D, Karppinen K, Dare AP, Sipari N, et al. 2021. Red and blue light treatments of ripening bilberry fruits reveal differences in signalling through abscisic acid-regulated anthocyanin biosynthesis. Plant Cell and Environment 44:3227−45 doi: 10.1111/pce.14158 |
[34] |
Oh HD, Yu DJ, Chung SW, Chea S, Lee HJ. 2018. Abscisic acid stimulates anthocyanin accumulation in 'Jersey' highbush blueberry fruits during ripening. Food Chemistry 244:403−7 doi: 10.1016/j.foodchem.2017.10.051 |
[35] |
Xu W, Dubos C, Lepiniec L. 2015. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends in Plant Science 20:176−85 doi: 10.1016/j.tplants.2014.12.001 |
[36] |
Han M, Yang C, Zhou J, Zhu J, Meng J, et al. 2020. Analysis of flavonoids and anthocyanin biosynthesis-related genes expression reveals the mechanism of petal color fading of Malus hupehensis (Rosaceae). Brazilian Journal of Botany 43:81−89 doi: 10.1007/s40415-020-00590-y |
[37] |
Hartmann U, Sagasser M, Mehrtens F, Stracke R, Weisshaar B. 2005. Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Molecular Biology 57:155−71 doi: 10.1007/s11103-004-6910-0 |
[38] |
Shin DH, Choi M, Kim K, Bang G, Cho M, et al. 2013. HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis. FEBS Letters 587:1543−47 doi: 10.1016/j.febslet.2013.03.037 |
[39] |
Berli FJ. 2010. Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet-absorbing compounds, antioxidant enzymes and membrane sterols. Plant, Cell & Environment 33:1057 doi: 10.1111/j.1365-3040.2010.02150.x |
[40] |
Brunetti C, Sebastiani F, Tattini M. 2019. Review: ABA, flavonols, and the evolvability of land plants. Plant Science 280:448−54 doi: 10.1016/j.plantsci.2018.12.010 |
[41] |
Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K. 2011. ABA-mediated transcriptional regulation in response to osmotic stress in plants. Journal of Plant Research 124:509−25 doi: 10.1007/s10265-011-0412-3 |
[42] |
Khan W, Prithiviraj B, Smith DL. 2003. Chitosan and chitin oligomers increase phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities in soybean leaves. Journal of Plant Physiology 160:859−63 doi: 10.1078/0176-1617-00905 |