[1]

Wang X, Ran J. 2014. Evolution and biogeography of gymnosperms. Molecular Phylogenetics and Evolution 75:24−40

doi: 10.1016/j.ympev.2014.02.005
[2]

Florin R. 1951. Evolution in cordaites and conifers. Acta Horticulturae Bergiani 15:285−388

[3]

Carlsbecker A, Sundström J, Tandre K, Englund M, Kvarnheden A, et al. 2003. The DAL10 gene from Norway spruce (Picea abies) belongs to a potentially gymnosperm-specific subclass of MADS-box genes and is specifically active in seed cones and pollen cones. Evolution and Development 5:551−61

doi: 10.1046/j.1525-142X.2003.03060.x
[4]

Becker A, Saedler H, Theissen G. 2003. Distinct MADS-box gene expression patterns in the reproductive cones of the gymnosperm Gnetum gnemon. Development Genes and Evolution 213:567−72

doi: 10.1007/s00427-003-0358-0
[5]

Cooke JEK, Eriksson M, Junttila O. 2012. The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant, Cell & Environment 35:1707−28

doi: 10.1111/j.1365-3040.2012.02552.x
[6]

Singh RK, Svystun T, AlDahmash B, Jönsson AM, Bhalerao RP. 2017. Photoperiod-and temperature-mediated control of phenology in trees a molecular perspective. New Phytologist 213:511−24

doi: /10.1111/nph.14346
[7]

Ma J, Chen X, Song Y, Zhang G, Zhou X, et al. 2021. MADS-box transcription factors MADS11 and DAL1 interact to mediate the vegetative-to-reproductive transition in pine. Plant Physiology 187:247−62

doi: 10.1093/plphys/kiab250
[8]

Niu S, Li J, Bo W, Yang W, Zuccolo A, et al. 2021. The Chinese pine genome and methylome unveil key features of conifer evolution. Cell 185:204−217.e14

doi: 10.1016/j.cell.2021.12.006
[9]

Liu Y, Yang K, Wei X, Wang X. 2017. Revisiting the phosphatidylethanolamine-binding protein (PEBP) gene family reveals cryptic FLOWERING LOCUS T gene homologs in gymnosperms and sheds new light on functional evolution. New Phytologist 212:730−44

doi: 10.1111/nph.14066
[10]

Holefors A, Opseth L, Ree Rosnes AK, Ripel L, Snipen L, et al. 2009. Identification of PaCOL1 and PaCOL2, two CONSTANS-like genes showing decreased transcript levels preceding short day induced growth cessation in Norway spruce. Plant Physiology and Biochemistry 47:105−15

doi: 10.1016/j.plaphy.2008.11.003
[11]

Zimin AV, Stevens KA, Crepeau MW, Puiu D, Wegrzyn JL, et al. 2017. An improved assembly of the loblolly pine mega-genome using long-read single-molecule sequencing. Gigascience 6:giw016

doi: 10.1093/gigascience/giw016
[12]

Stevens KA, Wegrzyn JL, Zimin A, Puiu D, Crepeau M, et al. 2016. Sequence of the sugar pine megagenome. Genetics 204:1613−26

doi: 10.1534/genetics.116.193227
[13]

Warren RL, Keeling CI, Yuen MM, Raymond A, Taylor GA, et al. 2015. Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism. The Plant Journal 83:189−212

doi: 10.1111/tpj.12886
[14]

Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y, et al. 2013. The Norway spruce genome sequence and conifer genome evolution. Nature 497:579−84

doi: 10.1038/nature12211
[15]

Kosiński G, Giertych M. 1982. Light conditions inside developing buds affect floral induction. Planta 155:93−94

doi: 10.1007/BF00402938
[16]

Mishra P, Panigrahi KC. 2015. GIGANTEA - an emerging story. Frontiers in Plant Science 6:8

doi: 10.3389/fpls.2015.00008
[17]

Shim JS, Kubota A, Imaizumi T. 2017. Circadian clock and photoperiodic flowering in Arabidopsis: CONSTANS is a hub for signal integration. Plant Physiology 173:5−15

doi: 10.1104/pp.16.01327
[18]

Li D, Zhang H, Mou M, Chen Y, Xiang S, et al. 2019. Arabidopsis class II TCP transcription factors integrate with the FT-FD module to control flowering. Plant physiology 181:97−111

doi: 10.1104/pp.19.00252
[19]

Bendix C, Mendoza JM, Stanley DN, Meeley R, Harmon FG. 2013. The circadian clock-associated gene gigantea1 affects maize developmental transitions. Plant, Cell & Environment 36:1379−90

doi: 10.1111/pce.12067
[20]

Kubota A, Kita S, Ishizaki K, Nishihama R, Yamato KT, et al. 2014. Co-option of a photoperiodic growth-phase transition system during land plant evolution. Nature Communications 5:3668

doi: 10.1038/ncomms4668
[21]

Karlgren A, Gyllenstrand N, Källman T, Lagercrantz U. 2013. Conserved Function of Core Clock Proteins in the Gymnosperm Norway Spruce (Picea abies). PLoS One 8:e60110

doi: 10.1371/journal.pone.0060110
[22]

Jun C, Yoshiaki T, Michael S, Thomas K, Nannan X, et al. 2014. Clinal variation at phenology-related genes in spruce: parallel evolution in FTL2 and Gigantea? Genetics 197:1025−38

doi: 10.1534/genetics.114.163063
[23]

Olsen JE. 2010. Light and temperature sensing and signaling in induction of bud dormancy in woody plants. Plant Molecular Biology 73:37−47

doi: 10.1007/s11103-010-9620-9
[24]

Eriksson ME, Millar AJ. 2003. The circadian clock. A plant's best friend in a spinning world. Plant Physiology 132:732−38

doi: 10.1104/pp.103.022343
[25]

Søgaard G, Johnsen Ø, Nilsen J, Junttila O. 2008. Climatic control of bud burst in young seedlings of nine provenances of Norway spruce. Tree Physiology 28:311−20

doi: 10.1093/treephys/28.2.311
[26]

Nose M, Kurita M, Tamura M, Matsushita M, Hiraoka Y, et al. 2020. Effects of day length- and temperature-regulated genes on annual transcriptome dynamics in Japanese cedar (Cryptomeria japonica D. Don), a gymnosperm indeterminate species. PLoS One 15:e0229843

doi: 10.1371/journal.pone.0229843
[27]

Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, et al. 2006. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040−43

doi: 10.1126/science.1126038
[28]

Bowe LM, Coat G, dePamphilis CW. 2000. Phylogeny of seed plants based on all three genomic compartments: Extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers. PNAS 97:4092−97

doi: 10.1073/pnas.97.8.4092
[29]

Lagercrantz U. 2009. At the end of the day: a common molecular mechanism for photoperiod responses in plants. Journal of Experimental Botany 60:2501−15

doi: 10.1093/jxb/erp139
[30]

Gyllenstrand N, Clapham D, Källman T, Lagercrantz U. 2007. A Norway Spruce FLOWERING LOCUS T homolog is implicated in control of growth rhythm in conifers. Plant Physiology 144:248−57

doi: 10.1104/pp.107.095802
[31]

Asante DKA, Yakovlev IA, Fossdal CG, Holefors A, Opseth L, et al. 2011. Gene expression changes during short day induced terminal bud formation in Norway spruce. Plant, Cell & Environment 34:332−46

doi: 10.1111/j.1365-3040.2010.02247.x
[32]

Klintenäs M, Pin PA, Benlloch R, Ingvarsson PK, Nilsson O. 2012. Analysis of conifer FLOWERING LOCUS T/TERMINAL FLOWER1-like genes provides evidence for dramatic biochemical evolution in the angiosperm FT lineage. New Phytologist 196:1260−73

doi: 10.1111/j.1469-8137.2012.04332.x
[33]

Helliwell CA, Wood CC, Robertson M, James Peacock W, Dennis ES. 2006. The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. The Plant Journal 46:183−92

doi: 10.1111/j.1365-313X.2006.02686.x
[34]

Searle I, He Y, Turck F, Vincent C, Fornara F, et al. 2006. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes & Development 20:898−912

doi: 10.1101/gad.373506
[35]

Hepworth SR, Valverde F, Ravenscroft D, Mouradov A, Coupland G. 2002. Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. The EMBO Journal 21:4327−37

doi: 10.1093/emboj/cdf432
[36]

Wan T, Liu Z, Li L, Leitch AR, Leitch IJ, et al. 2018. A genome for gnetophytes and early evolution of seed plants. Nature Plants 4:82−89

doi: 10.1038/s41477-017-0097-2
[37]

Zhang H, Cui X, Guo Y, Luo C, Zhang L. 2018. Picea wilsonii transcription factor NAC2 enhanced plant tolerance to abiotic stress and participated in RFCP1-regulated flowering time. Plant Molecular Biology 98:471−93

doi: 10.1007/s11103-018-0792-z
[38]

Fu D, Dunbar M, Dubcovsky J. 2007. Wheat VIN3-like PHD finger genes are up-regulated by vernalization. Molecular Genetics and Genomics 277:301−13

doi: 10.1007/s00438-006-0189-6
[39]

André D, Marcon A, Lee KC, Goretti D, Zhang B E. et al. 2022. FLOWERING LOCUS T paralogs control the annual growth cycle in Populus trees. Current Biology 32:2988−96

doi: 10.1016/j.cub.2022.05.023
[40]

Chiang CM, Viejo M, Aas OT, Hobrak KT, Stromme CB, et al. 2021. Interactive effects of light quality during day extension and temperature on bud set, bud burst and PaFTL2, PaCOL1-2 and PaSOC1 expression in Norway Spruce (Picea abies (L.) Karst.). Forests 12:337

doi: 10.3390/f12030337
[41]

Heide OM. 1974. Growth and dormancy in Norway Spruce ecotypes (Picea abies) Interaction of photoperiod and temperature. Physiology Plantarum 30:1−12

doi: 10.1111/j.1399-3054.1974.tb04983.x
[42]

Hamilton JA, El Kayal W, Hart AT, Runcie DE, Arango-Velez A, et al. 2016. The joint influence of photoperiod and temperature during growth cessation and development of dormancy in white spruce (Picea glauca). Tree Physiology 36:1432−48

doi: 10.1093/treephys/tpw061
[43]

Michaels SD, Amasino RM. 2001. Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. The Plant Cell 13:935−941

doi: 10.1105/tpc.13.4.935
[44]

Feng W, Jacob Y, Veley KM, Ding L, Yu X, et al. 2011. Hypomorphic alleles reveal FCA-independent roles for FY in the regulation of FLOWERING LOCUS C. Plant Physiology 155:1425−34

doi: 10.1104/pp.110.167817
[45]

Hornyik C, Terzi LC, Simpson GG. 2010. The spen family protein FPA controls alternative cleavage and polyadenylation of RNA. Developmental Cell 18:203−13

doi: 10.1016/j.devcel.2009.12.009
[46]

Pascual MB, Canovas FM and Avila C. 2015. The NAC transcription factor family in maritime pine (Pinus Pinaster): molecular regulation of two genes involved in stress responses. BMC Plant Biology 15:254

doi: 10.1186/s12870-015-0640-0
[47]

Karlgren A, Gyllenstrand N, Clapham D, Lagercrantz U. 2013. FLOWERING LOCUS T/TERMINAL FLOWER1-Like genes affect growth rhythm and bud set in Norway Spruce. Plant Physiology 163:792−803

doi: 10.1104/pp.113.224139
[48]

Avia K, Kärkkäinen K, Lagercrantz U, Savolainen O. 2014. Association of FLOWERING LOCUS T/TERMINAL FLOWER 1-like gene FTL2 expression with growth rhythm in Scots pine (Pinus sylvestris). New Phytologist 204:159−70

doi: 10.1111/nph.12901
[49]

Karlgren A, Gyllenstrand N, Källman T, Sundström JF, Moore D, et al. 2011. Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution. Plant Physiology 156:1967−77

doi: 10.1104/pp.111.176206
[50]

Moyroud E, Kusters E, Monniaux M, Koes R, Parcy F. 2010. LEAFY blossoms. Trends in Plant Science 15:346−52

doi: 10.1016/j.tplants.2010.03.007
[51]

Vázquez-Lobo A, Carlsbecker A, Vergara-Silva F, Alvarez-Buylla ER, Piñero D, et al. 2007. Characterization of the expression patterns of LEAFY/FLORICAULA and NEEDLY orthologs in female and male cones of the conifer genera Picea, Podocarpus, and Taxus: implications for current evo-devo hypotheses for gymnosperms. Evolution & Development 9:446−59

doi: 10.1111/j.1525-142x.2007.00182.x
[52]

Frohlich MW, Parker DS. 2000. The mostly male theory of flower evolutionary origins: from genes to fossils. Systematic Botany 25:155−70

doi: 10.2307/2666635
[53]

Mellerowicz EJ, Horgan K, Walden A, Coker A, Walter C. 1998. PRFLL - A Pinus radiata homologue of FLORICAULA and LEAFY is expressed in buds containing vegetative shoot and undi erentiated male cone primordia. Planta 206:619−29

doi: 10.1007/s004250050440
[54]

Mouradov A, Glassick T, Hamdorf B, Murphy L, Fowler B, et al. 1998. NEEDLY, a Pinus radiata ortholog of FLORICAULA/LEAFY genes, expressed in both reproductive and vegetative meristems. PNAS 95:6537−42

doi: 10.1073/pnas.95.11.6537
[55]

Shiokawa T, Yamada S, Futamura N, Osanai K, Murasugi D, et al. 2008. Isolation and functional analysis of the CjNdly gene, a homolog in Cryptomeria japonica of FLORICAULA/LEAFY genes. Tree Physiology 28:21−28

doi: 10.1093/treephys/28.1.21
[56]

Dornelas MC, Rodriguez APM. 2005. A FLORICAULA/LEAFY gene homolog is preferentially expressed in developing female cones of the tropical pine Pinus caribaea var. caribaea. Genetics and Molecular Biology 2:299−307

doi: 10.1590/s1415-47572005000200021
[57]

Carlsbecker A, Tandre K, Johanson U, Englund M, Engström P. 2004. The MADS-box gene DAL1 is a potential mediator of the juvenile-to-adult transition in Norway spruce (Picea abies). The Plant Journal 40:546−557

doi: 10.1111/j.1365-313X.2004.02226.x
[58]

Carlsbecker A, Sundström JF, Englund M, Uddenberg D, Izquierdo L, et al. 2013. Molecular control of normal and acrocona mutant seed cone development in Norway spruce (Picea abies) and the evolution of conifer ovule-bearing organs. New Phytologist 200:261−75

doi: 10.1111/nph.12360
[59]

Niu S, Yuan H, Sun X, Porth I, Li Y, et al. 2016. A transcriptomics investigation into pine reproductive organ development. New Phytologist 209:1278−89

doi: 10.1111/nph.13680
[60]

Zhang P, Tan HTW, Pwee HK, Kumar PP. 2004. Conservation of class C function of floral organ development during 300 million years of evolution from gymnosperms to angiosperms. The Plant Journal 37:566−77

doi: 10.1046/j.1365-313X.2003.01983.x
[61]

Winter KU, Saedler H, Theißen G. 2002. On the origin of class B floral homeotic genes: functional substitution and dominant inhibition in Arabidopsis by expression of an orthologue from the gymnosperm Gnetum. The Plant Journal 4:457−75

doi: 10.1046/j.1365-313x.2002.01375.x
[62]

Moyroud E, Monniaux M, Thévenon E, Dumas R, Scutt CP, et al. 2017. A link between LEAFY and B-gene homologues in Welwitschia mirabilis sheds light on ancestral mechanisms prefiguring floral development. New Phytologist 216:469−81

doi: 10.1111/nph.14483
[63]

Albani MC, Coupland G. 2010. Comparative analysis of flowering in annual and perennial plants. In Current Topics in Developmental Biology, ed. Timmermans MCP. Vol. 91. UK: Academic Press, Elsevier. pp. 323−48. https://doi.org/10.1016/S0070-2153(10)91011-9

[64]

Bergonzi S, Albani MC, Ver Loren van Themaat E, Nordström KJ, Wang R, et al. 2013. Mechanisms of age-dependent response to winter temperature in perennial flowering of Arabis alpina. Science 340:1094−97

doi: 10.1126/science.1234116
[65]

Nodine MD, Bartel DP. 2010. MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Genes & Development 24:2678−92

doi: 10.1101/gad.1986710
[66]

Wötzel S, Andrello M, Albani MC, Koch MA, Coupland G, et al. 2022. Arabis alpina: A perennial model plant for ecological genomics and life-history evolution. Molecular Ecology Resources 22:468−86

doi: 10.1111/1755-0998.13490
[67]

Albani MC, Castaings L, Wötzel S, Mateos JL, Wunder J, et al. 2012. PEP1 of Arabis alpina is encoded by two overlapping genes that contribute to natural genetic variation in perennial flowering. PLoS Genetics 8:e1003130

doi: 10.1371/journal.pgen.1003130
[68]

Wang R, Farrona S, Vincent C, Joecker A, Schoof H, et al. 2009. PEP1 regulates perennial flowering in Arabis alpina. Nature 459:423−27

doi: 10.1038/nature07988
[69]

Wu G, Park MY, Conway SR, Wang J, Weigel D, et al. 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750−59

doi: 10.1016/j.cell.2009.06.031
[70]

Zhang Q, Li J, Sang Y, Xing S, Wu Q, et al. 2015. Identification and characterization of MicroRNAs in Ginkgo biloba var. epiphylla Mak. PLoS One 10:e0127184

doi: 10.1371/journal.pone.0127184
[71]

Niu S, Liu C, Yuan HW, Li P, Li Y, et al. 2015. Identification and expression profiles of sRNAs and their biogenesis and action-related genes in male and female cones of Pinus tabuliformis. BMC Genomics 1:693

doi: 10.1186/s12864-015-1885-6
[72]

Akhter S, Westrin KJ, Zivi N, Nordal V, Kretzschmar WW, et al. 2022. Cone-setting in spruce is regulated by conserved elements of the age-dependent flowering pathway. New Phytologist 236:1951−63

doi: 10.1111/nph.18449
[73]

Zhang M, Chen Y, Jin X, Cai Y, Yuan Y, et al. 2019. New different origins and evolutionary processes of AP2/EREBP transcription factors in Taxus chinensis. BMC Plant Biology 19:413

doi: 10.1186/s12870-019-2044-z
[74]

Nilsson L, Carlsbecker A, Sundås-Larsson A, Vahala T. 2007. APETALA2-like genes from Picea abies show functional similarities to their Arabidopsis homologues. Planta 225:589−602

doi: 10.1007/s00425-006-0374-1
[75]

Shigyo M, Hasebe M, Ito M. 2006. Molecular evolution of the AP2 subfamily. Gene 366:256−65

doi: 10.1016/j.gene.2005.08.009
[76]

Mouradov A, Glassick TV, Hamdorf BA, Murphy LC, Marla SS, et al. 1998. Family of MADS-Box genes expressed early in male and female reproductive structures of monterey pine. Plant Physiology 117:55−62

doi: 10.1104/pp.117.1.55
[77]

Xiang W, Li W, Zhang S, Qi L. 2019. Transcriptome-wide analysis to dissect the transcription factors orchestrating the phase change from vegetative to reproductive development in Larix kaempferi. Tree Genetics & Genomes 15:681−89

doi: 10.1007/s11295-019-1376-z
[78]

Chen F, Zhang X, Liu X, Zhang L. 2017. Evolutionary analysis of MIKCc-Type MADS-box genes in gymnosperms and angiosperms. Frontiers in Plant Science 8:895

doi: 10.3389/fpls.2017.00895
[79]

Akhter S, Kretzschmar W, Nordal V, Delhomme N, Street NR, et al. 2018. Integrative analysis of three RNA sequencing methods identifies mutually exclusive exons of MADS-box isoforms during early bud development in Picea abies. Frontiers in Plant Science 9:1625

doi: 10.3389/fpls.2018.01625
[80]

Uddenberg D, Reimegård J, Clapham D, Almqvist C, von Arnold S, et al. 2013. Early cone setting in Picea abies acrocona is associated with increased transcriptional activity of a MADS-box transcription factor. Plant Physiology 161:813−23

doi: 10.1104/pp.112.207746
[81]

Chen X, Zhu Q, NieY, Han F, Li Y, et al. 2021. Determination of conifer age biomarker DAL1 interactome using Y2H-seq. Forestry Research 1:12

doi: 10.48130/fr-2021-0012
[82]

Bao S, Hua C, Shen L, Yu H. 2020. New insights into gibberellin signaling in regulating flowering in Arabidopsis. Journal of Integrative Plant Biology 62:118−131

doi: 10.1111/jipb.12892
[83]

Srikanth A, Schmid M. 2011. Regulation of flowering time: all roads lead to Rome. Cellular and Molecular Life Sciences 68:2013−2037

doi: 10.1007/s00018-011-0673-y
[84]

Achard P, Herr A, Baulcombe DC, Harberd NP. 2004. Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357−65

doi: 10.1242/dev.01206
[85]

Yu S, Galvão VC, Zhang Y, Horrer D, Zhang T, et al. 2012. Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE Transcription factors. The Plant Cell 24:3320−32

doi: 10.1105/tpc.112.101014
[86]

Blázquez MA, Green R, Nilsson O, Sussman MR, Weigel D. 1998. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. The Plant Cell 10:791−800

doi: 10.1105/tpc.10.5.791
[87]

Schwechheimer C, Willige BC. 2009. Shedding light on gibberellic acid signalling. Current Opinion in Plant Biology 12:57−62

doi: 10.1016/j.pbi.2008.09.004
[88]

de Lucas M, Davière JM, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz JM, et al. 2008. A molecular framework for light and Gibberellin control of cell elongation. Nature 451:480−84

doi: 10.1038/nature06520
[89]

Millar AA, Lohe A, Wong G. 2019. Biology and Function of miR159 in Plants. Plants 8:255

doi: 10.3390/plants8080255
[90]

Rosenberg O, Almqvist C, Weslien J. 2012. Systemic insecticide and Gibberellin reduced cone damage and increased flowering in a spruce seed orchard. Journal of Economic Entomology 105:916−22

doi: 10.1603/EC11388
[91]

Cecich RA, Kang H, Chalupka W. 1994. Regulation of early flowering in Pinus banksiana. Tree Physiology 14:275−84

doi: 10.1093/treephys/14.3.275
[92]

Li Y, Li X, Zhao MH, Pang ZY, Wei JT, et al. 2021. An overview of the practices and management methods for enhancing seed production in conifer plantations for commercial use. Horticulturae 7:252

doi: 10.3390/horticulturae7080252
[93]

Kong L, Von Aderkas P, Irina Zaharia L. 2016. Effects of exogenously applied Gibberellins and Thidiazuron on phytohormone profiles of long-shoot buds and cone gender determination in lodgepole pine. Journal of Plant Growth Regulation 35:172−82

doi: 10.1007/s00344-015-9517-6
[94]

Niu S, Yuan L, Zhang Y, Chen X, Li W. 2014. Isolation and expression profiles of Gibberellin metabolism genes in developing male and female cones of Pinus tabuliformis. Functional & Integrative Genomics 14:697−705

doi: 10.1007/s10142-014-0387-y
[95]

Shearer RC, Stoehr MU, Webber JE, Ross SD. 1999. Seed cone production enhanced by injecting 38-year-old Larix occidentalis Nutt. with GA4/7. New Forests 18:289−300

doi: 10.1023/A:1006612506340
[96]

Pharis RP, Webber JE, Ross SD. 1987. The promotion of flowering in forest trees by gibberellin A47 and cultural treatments: A review of the possible mechanisms. Forest Ecology and Management 19:65−84

doi: 10.1016/0378-1127(87)90012-0
[97]

Kong L, Aderkas P, Zaharia I, Abrams SR, Lee T, et al. 2012. Analysis of phytohormone profiles during male and female cone initiation and early differentiation in long-shoot buds of lodgepole pine. Journal of Plant Growth Regulation 31:478−89

doi: 10.1007/s00344-011-9257-1
[98]

Du R, Niu S, Liu Y, Sun X, Porth I, et al. 2017. The gibberellin GID1-DELLA signalling module exists in evolutionarily ancient conifers. Scientific Reports 7:16637

doi: 10.1038/s41598-017-11859-w
[99]

Katahata S, Futamura N, Igasaki T, Shinohara K. 2014. Functional analysis of SOC1-like and AGL6-likeMADS-box genes of the gymnosperm Cryptomeria japonica. Tree Genetics & Genomes 10:317−27

doi: 10.1007/s11295-013-0686-9
[100]

Li W, Liu S, Ma J, Liu H, Han F, et al. 2020. Gibberellin signaling is required for far-red light-induced shoot elongation in Pinus tabuliformis seedlings. Plant Physiology 182:658−68

doi: 10.1104/pp.19.00954
[101]

Street NR. 2019. Genomics of forest trees. In Advances in Botanical Research, ed. Cánovas FM. Vol. 89. UK: Academic Press. pp. 1−37. https://doi.org/10.1016/bs.abr.2018.11.001

[102]

Poovaiah C, Phillips L, Geddes B, Reeves C, Sorieul M, et al. 2021. Genome editing with CRISPR/Cas9 in Pinus radiata (D. Don). BMC Plant Biology 21:363

doi: 10.1186/s12870-021-03143-x
[103]

Cui Y, Zhao J, Gao Y, Zhao R, Zhang J, et al. 2021. Efficient multi-sites genome editing and plant regeneration via somatic embryogenesis in Picea glauca. Frontiers in Plant Science 12:751891

doi: 10.3389/fpls.2021.751891
[104]

Elfstrand M, Baison J, Lundén K, Zhou L, Vos I, et al. 2020. Association genetics identifies a specifically regulated Norway spruce laccase gene, PaLAC5, linked to Heterobasidion parviporum resistance. Plant, Cell & Environment 43:1779−91

doi: 10.1111/pce.13768
[105]

Mukrimin M, Kovalchuk A, Neves LG, Jaber EHA, Haapanen M, et al. 2018. Genome-wide exon-capture approach identifies genetic variants of Norway Spruce genes associated with susceptibility to Heterobasidion parviporum infection. Frontiers in Plant Science 9:793

doi: 10.3389/fpls.2018.00793
[106]

Di Pierro EA, Mosca E, Rocchini D, Binelli G, Neale DB, et al. 2016. Climate-related adaptive genetic variation and population structure in natural stands of Norway spruce in the South-Eastern Alps. Tree Genetics & Genomes 12:16

doi: 10.1007/s11295-016-0972-4
[107]

Sena JS, Lachance D, Duval I, Nguyen TTA, Stewart D, et al. 2019. Functional analysis of the PgCesA3 white spruce cellulose synthase gene promoter in secondary xylem. Frontiers in Plant Science 10:626

doi: 10.3389/fpls.2019.00626
[108]

Lamara M, Parent GJ, Giguère I, Beaulieu J, Bousquet J, et al. 2018. Association genetics of acetophenone defence against spruce budworm in mature white spruce. BMC Plant Biology 18:231

doi: 10.1186/s12870-018-1434-y
[109]

Calleja-Rodriguez A, Li Z, Hallingbäck HR, Sillanpää MJ, Wu HX, et al. 2019. Analysis of phenotypic- and Estimated Breeding Values (EBV) to dissect the genetic architecture of complex traits in a Scots pine three-generation pedigree design. Journal of Theoretical Biology 462:283−92

doi: 10.1016/j.jtbi.2018.11.007
[110]

Li Z, Hallingbäck HR, Abrahamsson S, Fries A, Gull BA, et al. 2014. Functional multi-locus QTL mapping of temporal trends in Scots pine wood traits. G3 Genes|Genomes|Genetics 4:2365−79

doi: 10.1534/g3.114.014068
[111]

Plomion C, Chancerel E, Endelman J, Lamy JB, Mandrou E, et al. 2014. Genome-wide distribution of genetic diversity and linkage disequilibrium in a mass-selected population of maritime pine. BMC Genomics 15:171

doi: 10.1186/1471-2164-15-171
[112]

Lepoittevin C, Harvengt L, Plomion C, Garnier-Géré P. 2012. Association mapping for growth, straightness and wood chemistry traits in the Pinus pinaster Aquitaine breeding population. Tree Genetics & Genomes 8:113−126

doi: 10.1007/s11295-011-0426-y
[113]

Telfer E, Graham N, Macdonald L, Li Y, Klápště J, et al. 2019. A high-density exome capture genotype-by-sequencing panel for forestry breeding in Pinus radiata. PLoS One 14:e0222640

doi: 10.1371/journal.pone.0222640
[114]

Liu JJ, Schoettle AW, Sniezko RA, Yao F, Zamany A, et al. 2019. Limber pine (Pinus flexilis James) genetic map constructed by exome-seq provides insight into the evolution of disease resistance and a genomic resource for genomics-based breeding. The Plant Journal 98:745−58

doi: 10.1111/tpj.14270
[115]

Han X, Chen Q, Yang Q, Zeng Q, Lan T, et al. 2019. Genome-wide analysis of superoxide dismutase genes inLarix kaempferi. Gene 686:29−36

doi: 10.1016/j.gene.2018.10.089
[116]

Niu S, Liu S, Ma J, Han F, Li Y, et al. 2019. The transcriptional activity of a temperature-sensitive transcription factor module is associated with pollen shedding time in pine. Tree Physiology 39:1173−1186

doi: 10.1093/treephys/tpz023
[117]

Ma J, Liu S, Han F, Li W, Li Y, et al. 2020. Comparative transcriptome analyses reveal two distinct transcriptional modules associated with pollen shedding time in pine. BMC Genomics 21:504

doi: 10.1186/s12864-020-06880-9
[118]

Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

doi: 10.1186/1471-2105-9-559
[119]

Hakman IC, Arnold S. 1983. Isolation and growth of protoplasts from cell suspensions of Pinus contorta dougl. ex loud. Plant Cell Reports 2:92−94

doi: 10.1007/BF00270174
[120]

Bekkaoui F, Datla RS, Pilon M, Tautorus TE, Crosby WL, et al. 1990. The effects of promoter on transient expression in conifer cell lines. Theoretical and Applied Genetics 79:353−59

doi: 10.1007/BF01186079
[121]

Géomez-Maldonado J, Crespillo R, ÉAvila C, Céanovas FM. 2001. Efficient preparation of maritime pine (Pinus pinaster) protoplasts suitable for transgene expression analysis. Plant Molecular Biology Reporter 19:361−66

doi: 10.1007/BF02772834
[122]

Guo Y, Song X, Zhao S, Lv J, Lu M. 2015. A transient gene expression system in Populus euphratica Oliv. protoplasts prepared from suspension cultured cells. Acta Physiologiae Plantarum 37:160

doi: 10.1007/s11738-015-1906-8
[123]

Liang Z, Zong Y, Gao C. 2016. An efficient targeted mutagenesis system using CRISPR/Cas in monocotyledons. Current Protocols in Plant Biology 1:329−44

doi: 10.1002/cppb.20021
[124]

Liu Z, Wu Y, Yang F, Zhang Y, Chen S, et al. 2013. BIK1 interacts with PEPRs to mediate ethylene-induced immunity. PNAS 110:6205−10

doi: 10.1073/pnas.1215543110
[125]

Denyer T, Timmermans MCP. 2022. Crafting a blueprint for single-cell RNA sequencing. Trends in Plant Science 27:92−103

doi: 10.1016/j.tplants.2021.08.016
[126]

Denyer T, Timmermans MCP. 2022. High-throughput single-cell RNA sequencing. Trends in Plant Science 27:104−105

doi: 10.1016/j.tplants.2021.09.003
[127]

Liu S, Ma J, Liu H, Guo Y, Li W, et al. 2020. An efficient system for Agrobacterium-mediated transient transformation in Pinus tabuliformis. Plant Methods 16:52

doi: 10.1186/s13007-020-00594-5
[128]

Borthakur D, Busov V, Cao XH, Du Q, Gailing O, et al. 2022. Current status and trends in forest genomics. Forestry Research 2:11

doi: 10.48130/fr-2022-0011
[129]

Lin YH, Li W, Sun YH, Kumari S, Wei H, et al. 2013. SND1 transcription factor-directed quantitative functional hierarchical genetic regulatory network in wood formation in Populus trichocarpa. The Plant Cell 25:4324−41

doi: 10.1105/tpc.113.117697
[130]

Wei H. 2019. Construction of a hierarchical gene regulatory network centered around a transcription factor. Briefings in Bioinformatics 20:1021−31

doi: 10.1093/bib/bbx152
[131]

Meng D, Yang Q, Dong B, Song Z, Niu L, Wang L, et al. 2019. Development of an efficient root transgenic system for pigeon pea and its application to other important economically plants. Plant Biotechnology Journal 17:1804−13

doi: 10.1111/pbi.13101
[132]

Bao W, Wang J, Wang Q, O'Hare D, Wan Y. 2016. Layered double hydroxide Nanotransporter for molecule delivery to intact plant cells. Science Reports 6:26738

doi: 10.1038/srep26738
[133]

Hasanzadeh A, Radmanesh F, Hosseini ES, Hashemzadeh I, Kiani, J, et al. 2021. Highly photoluminescent Nitrogen- and Zinc-doped carbon dots for efficient delivery of CRISPR/Cas9 and mRNA. Bioconjugate Chemistry 32:1875−87

doi: 10.1021/acs.bioconjchem.1c00309