[1]

de Wit M, Galvão VC, Fankhauser C. 2016. Light-mediated hormonal regulation of plant growth and development. Annual Review of Plant Biology 67:513−37

doi: 10.1146/annurev-arplant-043015-112252
[2]

Yadav A, Singh D, Lingwan M, Yadukrishnan P, Masakapalli SK, et al. 2020. Light signaling and UV-B-mediated plant growth regulation. Journal of Integrative Plant Biology 62:1270−92

doi: 10.1111/jipb.12932
[3]

Caldwell MM, Ballaré CL, Bornman JF, Flint SD, Björn LO, et al. 2003. Terrestrial ecosystems, increased solar ultraviolet radiation and interactions with other climatic change factors. Photochemical & Photobiological Sciences 2:29−38

doi: 10.1039/b211159b
[4]

Manova V, Gruszka D. 2015. DNA damage and repair in plants - from models to crops. Frontiers in Plant Science 6:885

doi: 10.3389/fpls.2015.00885
[5]

Kim JH. 2019. Chromatin remodeling and epigenetic regulation in plant DNA damage repair. International Journal of Molecular Sciences 20:4093

doi: 10.3390/ijms20174093
[6]

Biedermann S, Hellmann H. 2010. The DDB1a interacting proteins ATCSA-1 and DDB2 are critical factors for UV-B tolerance and genomic integrity in Arabidopsis thaliana. The Plant Journa 62:404−15

doi: 10.1111/j.1365-313X.2010.04157.x
[7]

Donà M, Mittelsten Scheid O. 2015. DNA damage repair in the context of plant chromatin. Plant Physiology 168:1206−18

doi: 10.1104/pp.15.00538
[8]

Ly V, Hatherell A, Kim E, Chan A, Belmonte MF, et al. 2013. Interactions between Arabidopsis DNA repair genes UVH6, DDB1A, and DDB2 during abiotic stress tolerance and floral development. Plant Science 213:88−97

doi: 10.1016/j.plantsci.2013.09.004
[9]

Kunz BA, Cahill DM, Mohr PG, Osmond MJ, Vonarx EJ. 2006. Plant responses to UV radiation and links to pathogen resistance. International Review of Cytology 255:1−40

doi: 10.1016/S0074-7696(06)55001-6
[10]

Roldán-Arjona T, Ariza RR. 2009. Repair and tolerance of oxidative DNA damage in plants. Mutation Research/Reviews in Mutation Research 681:169−79

doi: 10.1016/j.mrrev.2008.07.003
[11]

Al Khateeb WM, Schroeder DF. 2009. Overexpression of Arabidopsis damaged DNA binding protein 1A (DDB1A) enhances UV tolerance. Plant Molecular Biology 70:371−83

doi: 10.1007/s11103-009-9479-9
[12]

Al Khateeb WM, Schroeder DF. 2007. DDB2, DDB1A and DET1 exhibit complex interactions during Arabidopsis development. Genetics 176:231−42

doi: 10.1534/genetics.107.070359
[13]

Bernhardt A, Mooney S, Hellmann H. 2010. Arabidopsis DDB1a and DDB1b are critical for embryo development. Planta 232:555−66

doi: 10.1007/s00425-010-1195-9
[14]

Farmer LM, Book AJ, Lee KH, Lin YL, Fu H, Vierstra RD. 2010. The RAD23 family provides an essential connection between the 26S proteasome and ubiquitylated proteins in Arabidopsis. The Plant Cell 22:124−42

doi: 10.1105/tpc.109.072660
[15]

Ganpudi AL, Schroeder DF. 2013. Genetic interactions of Arabidopsis thaliana damaged DNA binding protein 1B (DDB1B) with DDB1A, DET1, and COP1. G3 Genes|Genomes|Genetics 3:493−503

doi: 10.1534/g3.112.005249
[16]

Feldberg RS. 1980. On the substrate specificity of a damage-specific DNA binding protein from human cells. Nucleic Acids Research 8:1133−43

doi: 10.1093/nar/8.5.1133
[17]

Chu G, Chang E. 1988. Xeroderma pigmentosum group E cells lack a nuclear factor that binds to damaged DNA. Science 242:564−67

doi: 10.1126/science.3175673
[18]

Shuck SC, Short EA, Turchi JJ. 2008. Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology. Cell Research 18:64−72

doi: 10.1038/cr.2008.2
[19]

Levin I, Frankel P, Gilboa N, Tanny S, Lalazar A. 2003. The tomato dark green mutation is a novel allele of the tomato homolog of the DEETIOLATED1 gene. Theoretical and Applied Genetics 106:454−60

doi: 10.1007/s00122-002-1080-4
[20]

Lieberman M, Segev O, Gilboa N, Lalazar A, Levin I. 2004. The tomato homolog of the gene encoding UV-damaged DNA binding protein 1 (DDB1) underlined as the gene that causes the high pigment-1 mutant phenotype. Theoretical and Applied Genetics 108:1574−81

doi: 10.1007/s00122-004-1584-1
[21]

Ishibashi T, Kimura S, Yamamoto T, Furukawa T, Takata K, et al. 2003. Rice UV-damaged DNA binding protein homologues are most abundant in proliferating tissues. Gene 308:79−87

doi: 10.1016/S0378-1119(03)00447-5
[22]

Oravecz A, Baumann A, Máté Z, Brzezinska A, Molinier J, et al. 2006. CONSTITUTIVELY PHOTOMORPHOGENIC1 is required for the UV-B response in Arabidopsis. The Plant Cell 18:1975−90

doi: 10.1105/tpc.105.040097
[23]

Hayes S, Sharma A, Fraser DP, Trevisan M, Cragg-Barber CK, et al. 2017. UV-B Perceived by the UVR8 Photoreceptor Inhibits Plant Thermomorphogenesis. Current Biology 27:120−27

doi: 10.1016/j.cub.2016.11.004
[24]

Mao X, Kim JI, Wheeler MT, Heintzelman AK, Weake VM, Chapple C. 2019. Mutation of Mediator subunit CDK8 counteracts the stunted growth and salicylic acid hyperaccumulation phenotypes of an Arabidopsis MED5 mutant. New Phytologist 223:233−45

doi: 10.1111/nph.15741
[25]

Huang X, Ouyang X, Yang P, Lau OS, Li G, et al. 2012. Arabidopsis FHY3 and HY5 positively mediate induction of COP1 transcription in response to photomorphogenic UV-B light. The Plant Cell 24:4590−606

doi: 10.1105/tpc.112.103994
[26]

Huang S, Liu Z, Yao R, Li D, Feng H. 2015. Comparative transcriptome analysis of the petal degeneration mutant pdm in Chinese cabbage (Brassica campestris ssp. pekinensis) using RNA-Seq. Molecular Genetics and Genomics 290:1833−47

doi: 10.1007/s00438-015-1041-7
[27]

Zhang M, Huang S, Gao Y, Fu W, Qu G, et al. 2020. Fine mapping of a leaf flattening gene Bralcm through BSR-Seq in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Scientific Reports 10:13924

doi: 10.1038/s41598-020-70975-2
[28]

Lin S, Dong H, Zhang F, Qiu L, Wang F, et al. 2014. BcMF8, a putative arabinogalactan protein-encoding gene, contributes to pollen wall development, aperture formation and pollen tube growth in Brassica campestris. Annals of Botany 113:777−88

doi: 10.1093/aob/mct315
[29]

Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12:357−60

doi: 10.1038/nmeth.3317
[30]

Zhao C, Zhao G, Geng Z, Wang Z, Wang K, et al. 2018. Physical mapping and candidate gene prediction of fertility restorer gene of cytoplasmic male sterility in cotton. BMC Genomics 19:6

doi: 10.1186/s12864-017-4406-y
[31]

Su A, Song W, Xing J, Zhao Y, Zhang R, et al. 2016. Identification of Genes Potentially Associated with the Fertility Instability of S-Type Cytoplasmic Male Sterility in Maize via Bulked Segregant RNA-Seq. PLoS One 11:e0163489

doi: 10.1371/journal.pone.0163489
[32]

Murray MG, Thompson WF. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8:4321−26

doi: 10.1093/nar/8.19.4321
[33]

Schubert M, Lindgreen S, Orlando L. 2016. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res Notes 9:88 Accordingly

[34]

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754−60

doi: 10.1093/bioinformatics/btp324
[35]

Zhu P, He L, Li Y, Huang W, Xi F, et al. 2014. OTG-snpcaller: an optimized pipeline based on TMAP and GATK for SNP calling from ion torrent data. PLoS One 9:e97507

doi: 10.1371/journal.pone.0097507
[36]

Wang K, Li M, Hakonarson H. 2010. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research 38:e164

doi: 10.1093/nar/gkq603
[37]

Rao X, Huang X, Zhou Z, Lin X. 2013. An improvement of the 2-ΔΔ CT method for quantitative real-time polymerase chain reaction data analysis. Biostatistics, Bioinformatics and Biomathematics 3:71−85

[38]

Guo Y, Yang Y, Huang Y, Shen HB. 2020. Discovering nuclear targeting signal sequence through protein language learning and multivariate analysis. Analytical Biochemistry 591:113565

doi: 10.1016/j.ab.2019.113565
[39]

Wang Q, Sang X, Ling Y, Zhao F, Yang Z, et al. 2009. Genetic analysis and molecular mapping of a novel gene for zebra mutation in rice (Oryza sativa L.). Journal of Genetics and Genomics 36:679−84

doi: 10.1016/S1673-8527(08)60160-5
[40]

Jin XJ, Sun DF, Li HY, Yang Y, Sun GL. 2013. Characterization and molecular mapping of a dwarf mutant in wheat. Genetics and Molecular Research 12:3555−65

doi: 10.4238/2013.September.12.2
[41]

Derkx AP, Orford S, Griffiths S, Foulkes MJ, Hawkesford MJ. 2012. Identification of differentially senescing mutants of wheat and impacts on yield, biomass and nitrogen partitioning. Journal of Integrative Plant Biology 54:555−66

doi: 10.1111/j.1744-7909.2012.01144.x
[42]

Zhang X, Ma W, Liu M, Li X, Li J, et al. 2022. OCTOPUS regulates BIN2 to control leaf curvature in Chinese cabbage. Proc Natl Acad Sci U S A 119:e2208978119

doi: 10.1073/pnas.2208978119
[43]

Chen W, Liu Z, Ren J, Huang S, Feng H. 2019. Identification and fine mapping of a stigma exsertion mutant gene (Bolsem) in ornamental kale (Brassica oleracea var. acephala). Molecular Breeding 39:164

doi: 10.1007/s11032-019-1049-5
[44]

Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, et al. 2003. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302:81−84

doi: 10.1126/science.1086072
[45]

Pilu R, Cassani E, Villa D, Curiale S, Panzeri D, et al. 2007. Isolation and characterization of a new mutant allele of brachytic 2 maize gene. Molecular Breeding 20:83−91

doi: 10.1007/s11032-006-9073-7
[46]

Li J, Wang QE, Zhu Q, El-Mahdy MA, Wani G, et al. 2006. DNA damage binding protein component DDB1 participates in nucleotide excision repair through DDB2 DNA-binding and cullin 4A ubiquitin ligase activity. Cancer Research 66:8590−97

doi: 10.1158/0008-5472.CAN-06-1115
[47]

Lee K, Kang H. 2016. Emerging roles of RNA-Binding proteins in plant growth, development, and stress responses. Molecules and Cells 39:179−85

doi: 10.14348/molcells.2016.2359
[48]

Frohnmeyer H, Staiger D. 2003. Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection. Plant Physiology 133:1420−28

doi: 10.1104/pp.103.030049
[49]

Caldwell MM, Bornman JF, Ballaré CL, Flint SD, Kulandaivelu G. 2007. Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochemical & Photobiological Sciences 6:252−66

doi: 10.1039/b700019g
[50]

Ambler JE, Krizek DT, Semeniuk P. 1975. Influence of UV-B radiation on early seedling growth and translocation of 65Zn from cotyledons in cotton. Physiologia Plantarum 34:177−81

doi: 10.1111/j.1399-3054.1975.tb03816.x
[51]

Gillet LC, Schärer OD. 2006. Molecular mechanisms of mammalian global genome nucleotide excision repair. Chemical Reviews 106:253−76

doi: 10.1021/cr040483f
[52]

Lima JF, Malavazi I, da Silva Ferreira ME, Savoldi M, Mota AO Jr, et al. 2008. Functional characterization of the putative Aspergillus nidulans DNA damage binding protein homologue DdbA. Molecular Genetics and Genomics 279:239−53

doi: 10.1007/s00438-007-0307-0