[1]

Mazza G, Miniati E. 1993. Anthocyanins in Fruits, Vegetables and Grains. 1st Edition. Boca Raton, Fla., USA: CRC Press. https://doi.org/10.1201/9781351069700

[2]

Martín J, Navas MJ, Jiménez-Moreno AM, Asuero AG. 2017. Anthocyanin pigments: Importance, sample preparation and extraction. In Phenolic compounds–Natural sources, importance and applications, eds. Soto-Hernandez M, Palma-Tenango M, Garcia-Mateos R. UK: InTechOpen. pp. 117−52. https://doi.org/10.5772/66892

[3]

Khoo HE, Azlan A, Tang ST, Lim SM. 2017. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research 61:1361779

doi: 10.1080/16546628.2017.1361779
[4]

Liu Y, Tikunov Y, Schouten RE, Marcelis LFM, Visser RGF, et al. 2018. Anthocyanin biosynthesis and degradation mechanisms in Solanaceous vegetables: a review. Frontiers in Chemistry 6:52

doi: 10.3389/fchem.2018.00052
[5]

Povero G, Gonzali S, Bassolino L, Mazzucato A, Perata P. 2011. Transcriptional analysis in high-anthocyanin tomatoes reveals synergistic effect of Aft and atv genes. Journal of Plant Physiology 168:270−79

doi: 10.1016/j.jplph.2010.07.022
[6]

Kang S-I, Rahim MA, Afrin KS, Jung H-J, Kim H-T, et al. 2018. Expression of anthocyanin biosynthesis-related genes reflects the peel color in purple tomato. Horticulture, Environment, and Biotechnology 59:435−45

doi: 10.1007/s13580-018-0046-7
[7]

Sun C, Deng L, Du M, Zhao J, Chen Q, et al. 2020. A transcriptional network promotes anthocyanin biosynthesis in tomato flesh. Molecular Plant 13:42−58

doi: 10.1016/j.molp.2019.10.010
[8]

Kiferle C, Fantini E, Bassolino L, Povero G, Spelt C, et al. 2015. Tomato R2R3-MYB proteins SlANT1 and SlAN2: same protein activity, different roles. PLoS One 10:e0136365

doi: 10.1371/journal.pone.0136365
[9]

Qiu Z, Wang X, Gao J, Guo Y, Huang Z, et al. 2016. The tomato Hoffman's anthocyaninless gene encodes a bHLH transcription factor involved in anthocyanin biosynthesis that is developmentally regulated and induced by low temperatures. PLoS One 11:e0151067

doi: 10.1371/journal.pone.0151067
[10]

Gao Y, Liu J, Chen Y, Tang H, Wang Y, et al. 2018. Tomato SlAN11 regulates flavonoid biosynthesis and seed dormancy by interaction with bHLH proteins but not with MYB proteins. Horticulture Research 5:27

doi: 10.1038/s41438-018-0032-3
[11]

Albert NW, Davies KM, Lewis DH, Zhang H, Montefiori M, et al. 2014. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. The Plant Cell 26:962−80

doi: 10.1105/tpc.113.122069
[12]

Mes PJ, Boches P, Myers JR, Durst R. 2008. Characterization of tomatoes expressing anthocyanin in the fruit. Journal of the American Society for Horticultural Science 133:262−69

doi: 10.21273/JASHS.133.2.262
[13]

Gonzali S, Mazzucato A, Perata P. 2009. Purple as a tomato: towards high anthocyanin tomatoes. Trends in Plant Science 14:237−41

doi: 10.1016/j.tplants.2009.02.001
[14]

Butelli E, Titta L, Giorgio M, Mock HP, Matros A, et al. 2008. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nature Biotechnology 26:1301−8

doi: 10.1038/nbt.1506
[15]

Zhang Y, Butelli E, Alseekh S, Tohge T, Rallapalli G, et al. 2015. Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato. Nature Communications 6:8635

doi: 10.1038/ncomms9635
[16]

Scarano A, Butelli E, De Santis S, Cavalcanti E, Hill L, et al. 2018. Combined dietary anthocyanins, flavonols, and stilbenoids alleviate inflammatory bowel disease symptoms in mice. Frontiers in Nutrition 4:75

doi: 10.3389/fnut.2017.00075
[17]

Myers J. 2012. Breeding tomatoes for increased flavonoids. Strengthening Community Seed Systems. Proceeding of the 6th Organic Seed Growers Conference, Port Townsend, Washington, USA, 2012. Port Townsend, Washington, USA: Organic Seed Alliance. pp. 50–51

[18]

Yan S, Chen N, Huang Z, Li D, Zhi J, et al. 2020. Anthocyanin Fruit encodes an R2R3-MYB transcription factor, SlAN2-like, activating the transcription of SlMYBATV to fine-tune anthocyanin content in tomato fruit. New Phytologist 225:2048−63

doi: 10.1111/nph.16272
[19]

Cao X, Qiu Z, Wang X, Van Giang T, Liu X, et al. 2017. A putative R3 MYB repressor is the candidate gene underlying atroviolacium, a locus for anthocyanin pigmentation in tomato fruit. Journal of Experimental Botany 68:5745−58

doi: 10.1093/jxb/erx382
[20]

Colanero S, Perata P, Gonzali S. 2018. The atroviolacea gene encodes an R3-MYB protein repressing anthocyanin synthesis in tomato plants. Frontiers in Plant Science 9:830

doi: 10.3389/fpls.2018.00830
[21]

Liu X, Huang Y, Qiu Z, Gong H. 2020. Comparative transcriptome analysis of differentially expressed genes between the fruit peel and flesh of the purple tomato cultivar 'Indigo Rose'. Plant Signaling & Behavior 15:1752534

doi: 10.1080/15592324.2020.1752534
[22]

Skolik P, Morais CLM, Martin FL, McAinsh MR. 2019. Determination of developmental and ripening stages of whole tomato fruit using portable infrared spectroscopy and Chemometrics. BMC Plant Biology 19:236

doi: 10.1186/s12870-019-1852-5
[23]

Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols 3:1101−8

doi: 10.1038/nprot.2008.73
[24]

Klap C, Yeshayahou E, Bolger AM, Arazi T, Gupta SK, et al. 2017. Tomato facultative parthenocarpy results from Sl AGAMOUS-LIKE 6 loss of function. Plant Biotechnology Journal 15:634−47

doi: 10.1111/pbi.12662
[25]

Wang H, Sun S, Zhou Z, Qiu Z, Cui X. 2020. Rapid analysis of anthocyanin and its structural modifications in fresh tomato fruit. Food Chemistry 333:127439

doi: 10.1016/j.foodchem.2020.127439
[26]

Chen Y, Kim P, Kong L, Wang X, Tan W, et al. 2022. A dual-function transcription factor SlJAF13 promotes anthocyanin biosynthesis in tomato. Journal of Experimental Botany 73:5559−80

doi: 10.1093/jxb/erac209
[27]

Martínez-Lüscher J, Sánchez-Díaz M, Delrot S, Aguirreolea J, Pascual I, et al. 2014. Ultraviolet-B radiation and water deficit interact to alter flavonol and anthocyanin profiles in grapevine berries through transcriptomic regulation. Plant and Cell Physiology 55:1925−36

doi: 10.1093/pcp/pcu121
[28]

Guo J, Wang MH. 2010. Ultraviolet A-specific induction of anthocyanin biosynthesis and PAL expression in tomato (Solanum lycopersicum L.). Plant Growth Regulation 62:1−8

doi: 10.1007/s10725-010-9472-y
[29]

Qiu Z, Wang H, Li D, Yu B, Hui Q, et al. 2019. Identification of candidate HY5-dependent and-independent regulators of anthocyanin biosynthesis in tomato. Plant and Cell Physiology 60:643−56

doi: 10.1093/pcp/pcy236
[30]

Maier A, Hoecker U. 2015. COP1/SPA ubiquitin ligase complexes repress anthocyanin accumulation under low light and high light conditions. Plant Signaling & Behavior 10:e970440

doi: 10.4161/15592316.2014.970440
[31]

Mazzucato A, Willems D, Bernini R, Picarella ME, Santangelo E, et al. 2013. Novel phenotypes related to the breeding of purple-fruited tomatoes and effect of peel extracts on human cancer cell proliferation. Plant Physiology and Biochemistry 72:125−33

doi: 10.1016/j.plaphy.2013.05.012
[32]

Venema J, Linger P, Van Heusden A, Van Hasselt P, Brüggemann W. 2005. The inheritance of chilling tolerance in tomato (Lycopersicon spp.). Plant Biology 7:118−30

doi: 10.1055/s-2005-837495
[33]

Alsamir M, Mahmood T, Trethowan R, Ahmad N. 2021. An overview of heat stress in tomato (Solanum lycopersicum L.). Saudi Journal of Biological Sciences 28:1654−63

doi: 10.1016/j.sjbs.2020.11.088
[34]

Christie PJ, Alfenito MR, Walbot V. 1994. Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta 194:541−49

doi: 10.1007/BF00714468
[35]

Lo Piero AR, Puglisi I, Rapisarda P, Petrone G. 2005. Anthocyanins accumulation and related gene expression in red orange fruit induced by low temperature storage. Journal of Agricultural and Food Chemistry 53:9083−88

doi: 10.1021/jf051609s
[36]

Mori K, Sugaya S, Gemma H. 2005. Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition. Scientia Horticulturae 105:319−30

doi: 10.1016/j.scienta.2005.01.032
[37]

Ubi BE, Honda C, Bessho H, Kondo S, Wada M, et al. 2006. Expression analysis of anthocyanin biosynthetic genes in apple skin: effect of UV-B and temperature. Plant Science 170:571−78

doi: 10.1016/j.plantsci.2005.10.009
[38]

Li P, Li YJ, Zhang FJ, Zhang GZ, Jiang XY, et al. 2017. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. The Plant Journal 89:85−103

doi: 10.1111/tpj.13324