[1] |
Zhang Y, Li C, Wang S, Yuan M, Li B, et al. 2021. Transcriptome and volatile compounds profiling analyses provide insights into the molecular mechanism underlying the floral fragrance of tree peony. Industrial Crops and Products 162:113286 doi: 10.1016/j.indcrop.2021.113286 |
[2] |
Xie L, Yan Z, Li M, Tian Y, Kilaru A, et al. 2020. Identification of phytochemical markers for quality evaluation of tree peony stamen using comprehensive HPLC–based analysis. Industrial Crops and Products 154:112711 doi: 10.1016/j.indcrop.2020.112711 |
[3] |
Sexton R, Stopford AP, Moodie WT, Porter AEA. 2005. Aroma production from cut sweet pea flowers (Lathyrus odoratus): the role of ethylene. Physiologia Plantarum 124:381−89 doi: 10.1111/j.1399-3054.2005.00498.x |
[4] |
Pichersky E, Noel JP, Dudareva N. 2006. Biosynthesis of plant volatiles: nature's diversity and ingenuity. Science 311:808−11 doi: 10.1126/science.1118510 |
[5] |
Schade F, Legge RL, Thompson JE. 2001. Fragrance volatiles of developing and senescing carnation flowers. Phytochemistry 56:703−10 doi: 10.1016/S0031-9422(00)00483-0 |
[6] |
Croteau R, Kutchan TM, Lewis NG. 2000. Natural products (secondary metabolites). In Biochemistry and molecular biology of plants, eds. Buchanan B, Gruissem W, Jones R. Vol. 24. Hoboken: Wiley. pp. 1250–318 |
[7] |
Li MR. 2010. Changes of aroma components and some related enzymes activity in tree peony petal during florescence and flower senescence. Thesis. Henan University of Science and Technology, Henan. pp. 6–8 |
[8] |
Li S, Chen L, Xu Y, Wang L, Wang L. 2012. Identification of floral fragrances in tree peony cultivars by gas chromatography–mass spectrometry. Scientia horticulturae 142:158−65 doi: 10.1016/j.scienta.2012.05.015 |
[9] |
Luo X, Yuan M, Li B, Li C, Zhang Y, et al. 2020. Variation of floral volatiles and fragrance reveals the phylogenetic relationship among nine wild tree peony species. Flavour and Fragrance Journal 35:227−41 doi: 10.1002/ffj.3558 |
[10] |
Zhang J, Zhou X, Hu L, Zou Z. 2013. SPME–GC–MS measurement of volatile in different tree peony varieties. Journal of Northwest Forestry University 28:136−43 doi: 10.3969/j.issn.1001-7461.2013.04.28 |
[11] |
Suo Z, Zhang C, Zheng Y, He L, Jin X, et al. 2012. Revealing genetic diversity of tree peonies at micro-evolution level with hyper-variable chloroplast markers and floral traits. Plant Cell Reports 31:2199−213 doi: 10.1007/s00299-012-1330-0 |
[12] |
Carrasco B, Hancock JF, Beaudry RM, Retamales JB. 2005. Chemical composition and inheritance patterns of aroma in Fragaria × ananassa and Fragaria Virginiana progenies. HortScience 40:1649−50 doi: 10.21273/HORTSCI.40.6.1649 |
[13] |
Wang G, Chang L, Zhang L, Dong J, Zhong C, et al. 2014. Preliminary study on the inheritance of volatile organic compounds in 40 F1 hybrid strawberry (Fragaria × ananassa Duch.) progeny from a 'Camarosa' (♀) × 'Benihoppe' (♂) cross. The Journal of Horticultural Science & Biotechnology 89:307−11 doi: 10.1080/14620316.2014.11513084 |
[14] |
Moreno E, Fita A, González–Mas MC, Rodríguez–Burruezo A. 2012. HS–SPME study of the volatile fraction of Capsicum accessions and hybrids in different parts of the fruit. Scientia Horticulturae 135:87−97 doi: 10.1016/j.scienta.2011.12.001 |
[15] |
Moreno-Peris E, Cortés-Olmos C, Díez-Díaz M, González-Mas MC, de Luis-Margarit A, et al. 2020. Hybridization in peppers (Capsicum spp.) to improve the volatile composition in fully ripe fruits: the effects of parent combinations and fruit tissues. Agronomy 10:751 doi: 10.3390/agronomy10050751 |
[16] |
Liu S, Yeh CT, Tang HM, Nettleton D, Schnable PS. 2012. Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS One 7:e36406 doi: 10.1371/journal.pone.0036406 |
[17] |
Ramirez-Gonzalez RH, Segovia V, Bird N, Fenwick P, Holdgate S, et al. 2015. RNA-Seq bulked segregant analysis enables the identification of high–resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnology Journal 13:613−624 doi: 10.1111/pbi.12281 |
[18] |
Li H. 2011. Genetic cariation of F1 generation crossed by bulked pollens pollination in tree peony (Paeonia suffruticosa). Thesis. Qingdao Agricultural University, Shandong. pp. 16–46 |
[19] |
Zhang L, Guo L, Guo D, Hou X. 2018. Separation analysis and mixed genetic analysis of phenotypic traits in F1 progenies of tree peony. Journal of Nanjing Forestry University (Natural Sciences Edition) 42:51−60 doi: 10.3969/j.issn.1000-2006.201712034 |
[20] |
Zheng B, Zhao Z, Ren J, Wang Y. 2014. Changes of aroma components in cattleya in different florescence. Forest Research 27:651−56 doi: 10.13275/j.cnki.lykxyj.2014.05.012 |
[21] |
Zhou H, Qi J, Dong M, Li P, Ma J. 2008. Analysis of the volatile components in peony flowers by SPME–GC–MS. Chemical Analysis and Meterage 17:21−23 |
[22] |
Kolattukudy PE. (Ed.) 1976. Chemistry and Biochemistry of Natural Waxes. Amsterdam: Elsevier. pp. 235−87 |
[23] |
Allebone JE, Hamilton RJ, Knights BA, Middleditch BS, Power DM. 1970. Cuticular leaf waxes part II. Chenopodium album L. and Lolium perenne L. Chemistry and Physics of Lipids 4:37−46 doi: 10.1016/0009-3084(70)90061-7 |
[24] |
Zhou X, Deng J, Li F, Zeng K, Xia Y. 2007. Studies on the volatile components in fermented chili products. Journal of Food Science and Biotechnology 26:54−59 |
[25] |
Li YY, Wang XW, Sun X, Wang WL, Sun XZ, et al. 2015. Multivariate statistical analysis of main floral volatiles emitted from central plains tree peony (Paeonia suffruticosa). Advances in Ornamental Horticulture of China, Introduction and breeding, Fujian, 2015. 2015: 92–101 |
[26] |
Delort E, Casilli A, Decorzant E, Jaquier A. 2015. Identification of new volatile compounds in the Citrus Hybrid Mandarinquat 'Indio'. Acta Horticulturae 1065:293−303 doi: 10.17660/actahortic.2015.1065.35 |