[1]

Lu N, Dai L, Wu B, Zhang Y, Luo Z, et al. 2015. A preliminary study on the crossability in Robinia pseudoacacia L. Euphytica 206:555−66

doi: 10.1007/s10681-015-1458-4
[2]

Hu S, Jiao J, Kou M, Wang N, García-Fayos P, et al. 2021. Quantifying the effects of Robinia pseudoacacia afforestation on plant community structure from a functional perspective: New prospects for management practices on the hilly and gullied Loess Plateau, China. Science of the Total Environment 773:144878

doi: 10.1016/j.scitotenv.2020.144878
[3]

Nicolescu VN, Rédei K, Mason WL, Vor T, Pöetzelsberger E, et al. 2020. Ecology, growth and management of black locust (Robinia pseudoacacia L.), a non-native species integrated into European forests. Journal of Forestry Research 31:1081−101

doi: 10.1007/s11676-020-01116-8
[4]

Guo Q, Liu J, Li J, Cao S, Zhang Z, et al. 2022. Genetic diversity and core collection extraction of Robinia pseudoacacia L. germplasm resources based on phenotype, physiology, and genotyping markers. Industrial Crops and Products 178:114627

doi: 10.1016/j.indcrop.2022.114627
[5]

Yang JC, Chung JS, Chen ZZ. 1995. Vegetative propagation of adult Eucalyptus grandis X urophylla and comparison of growth between micropropagated plantlets and rooted cuttings. Plant Cell Reports 15:170−73

doi: 10.1007/BF00193713
[6]

Guo Q, Li X, Yang S, Yang Z, Sun Y, et al. 2018. Evaluation of the Genetic Diversity and Differentiation of Black Locust (Robinia pseudoacacia L.) Based on Genomic and Expressed Sequence Tag-Simple Sequence Repeats. International Journal of Molecular Sciences 19:2492

doi: 10.3390/ijms19092492
[7]

Tilden RL, West SH. 1985. Reversal of the effects of aging in soybean seeds. Plant Physiology 77:584−86

doi: 10.1104/pp.77.3.584
[8]

Olesen PO. 1978. On cyclophysis and topophysis. Silvae Genet 27:173−78

[9]

Abdul-Hamid H, Mencuccini M. 2009. Age- and size-related changes in physiological characteristics and chemical composition of Acer pseudoplatanus and Fraxinus excelsior trees. Tree Physiology 29:27−38

doi: 10.1093/treephys/tpn001
[10]

Zhang Y, Zang Q, Qi L, Han S, Li W. 2020. Effects of cutting, pruning, and grafting on the expression of age-related genes inLarix kaempferi. Forests 11:218

doi: 10.3390/f11020218
[11]

Poethig RS. 2003. Phase change and the regulation of developmental timing in plants. Science 301:334−36

doi: 10.1126/science.1085328
[12]

Wendling I, Trueman SJ, Xavier A. 2014. Maturation and related aspects in clonal forestry—part II: reinvigoration, rejuvenation and juvenility maintenance. New Forests 45:473−86

doi: 10.1007/s11056-014-9415-y
[13]

Vidoy-Mercado I, Narváez I, Palomo-Ríos E, Litz RE, Barceló-Muñoz A, et a. 2021. Reinvigoration/Rejuvenation Induced through Micrografting of Tree Species: Signaling through Graft Union. Plants 10:1197

doi: 10.3390/plants10061197
[14]

Zhang Z, Sun Y, Li Y. 2020. Plant rejuvenation: from phenotypes to mechanisms. Plant Cell Reports 39:1249−62

doi: 10.1007/s00299-020-02577-1
[15]

Zhang Z, Liu J, Cao S, Guo Q, Sun Y, et al. 2022. The RpTOE1-RpFT Module Is Involved in Rejuvenation during Root-Based Vegetative Propagation in Robinia pseudoacacia. International Journal of Molecular Sciences 23:5079

doi: 10.3390/ijms23095079
[16]

Wendling I, Trueman SJ, Xavier A. 2014. Maturation and related aspects in clonal forestry—part I: concepts, regulation and consequences of phase change. New Forests 45:449−71

doi: 10.1007/s11056-014-9421-0
[17]

Apple M, Tiekotter K, Snow M, Young J, Soeldner A, et al. 2002. Needle anatomy changes with increasing tree age in Douglas-fir. Tree Physiology 22:129−136

doi: 10.1093/treephys/22.2-3.129
[18]

Yu S, Cao L, Zhou CM, Zhang TQ, Lian H, et al. 2013. Sugar is an endogenous cue for juvenile-to-adult phase transition in plants. eLife 2:e00269

doi: 10.7554/elife.00269
[19]

Kuusk V, Niinemets Ü, Valladares F. 2017. A major trade-off between structural and photosynthetic investments operative across plant and needle ages in three Mediterranean pines. Tree Physiology 38:543−57

doi: 10.1093/treephys/tpx139
[20]

Ananieva K, Ananiev ED, Mishev K, Georgieva K, Tzvetkova N, et al. 2008. Changes in photosynthetic capacity and polypeptide patterns during natural senescence and rejuvenation of Cucurbita pepo L. (zucchini) cotyledons. Plant Growth Regulation 54:23−29

doi: 10.1007/s10725-007-9223-x
[21]

Bäurle I, Dean C. 2006. The timing of developmental transitions in plants. Cell 125:655−64

doi: 10.1016/j.cell.2006.05.005
[22]

Chen YT, Shen CH, Lin WD, Chu HA, Huang BL, et al. 2013. Small RNAs of Sequoia sempervirens during rejuvenation and phase change. Plant biology (Stuttgart, Germany) 15:27−36

doi: 10.1111/j.1438-8677.2012.00622.x
[23]

Wu G, Park MY, Conway SR, Wang JW, Weigel D, et al. 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750−759

doi: 10.1016/j.cell.2009.06.031
[24]

Ye B, Shang G, Pan Y, Xu Z, Zhou C, et al. 2020. AP2/ERF Transcription Factors Integrate Age and Wound Signals for Root Regeneration. The Plant Cell 32:226−41

doi: 10.1105/tpc.19.00378
[25]

Werner S, Bartrina I, Schmülling T. 2021. Cytokinin regulates vegetative phase change in Arabidopsis thaliana through the miR172/TOE1-TOE2 module. Nature Communications 12:5816

doi: 10.1038/s41467-021-26088-z
[26]

Li H, Luo Y, Ma B, Hu J, Lv Z, et al. 2021. Hierarchical action of mulberry miR156 in the vegetative phase transition. International Journal of Molecular Sciences 22:5550

doi: 10.3390/ijms22115550
[27]

He J, Xu M, Willmann MR, McCormick K, Hu T, et al. 2018. Threshold-dependent repression of SPL gene expression by miR156/miR157 controls vegetative phase change in Arabidopsis thaliana. Plos Genetics 14:e1007337

doi: 10.1371/journal.pgen.1007337
[28]

Jung JH, Ju Y, Seo PJ, Lee JH, Park CM. 2012. The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis. The Plant Journal 69:577−88

doi: 10.1111/j.1365-313x.2011.04813.x
[29]

Carlsbecker A, Tandre K, Johanson U, Englund M, Engström P. 2004. The MADS-box gene DAL1 is a potential mediator of the juvenile-to-adult transition in Norway spruce (Picea abies). The Plant Journal 40:546−57

doi: 10.1111/j.1365-313X.2004.02226.x
[30]

Ma J, Chen X, Song Y, Zhang G, Zhou X, et al. 2021. MADS-box transcription factors MADS11 and DAL1 interact to mediate the vegetative-to-reproductive transition in pine. Plant Physiology 187:247−62

doi: 10.1093/plphys/kiab250
[31]

Khan MR, Ai XY, Zhang JZ, Zhang JZ. 2014. Genetic regulation of flowering time in annual and perennial plants. Wiley interdisciplinary reviews. RNA 5:347−59

doi: 10.1002/wrna.1215
[32]

Husen A, Pal M. 2007. Effect of branch position and auxin treatment on clonal propagation of Tectona grandis Linn. f. New Forests 34:223−33

doi: 10.1007/s11056-007-9050-y
[33]

Bouteiller XP, Porté AJ, Mariette S, Monty A. 2017. Using automated sanding to homogeneously break seed dormancy in black locust (Robinia pseudoacacia L., Fabaceae). Seed Science Research 27:243−50

doi: 10.1017/S0960258517000150
[34]

Wang X, Zhao Z, Quan J. 2011. Indole-3-butyric acid on rooting and endogenous plant hormones in tetraploid and diploid Robinia pseudoacacia hardwood cuttings. Phyton 80:93−100

doi: 10.32604/phyton.2011.80.093
[35]

Ndez MLP, Burrieza HP, Rizzo AJ, Nez-Tosar LM, Maldonado S. 2015. Cellular and molecular aspects of quinoa leaf senescence. Plant Science 238:178−87

doi: 10.1016/j.plantsci.2015.06.003
[36]

Rankenberg T, Geldhof B, van Veen H, Holsteens K, Van de Poel B, et al. 2021. Age-dependent abiotic stress resilience in plants. Trends in Plant Science 26:692−705

doi: 10.1016/j.tplants.2020.12.016
[37]

Raihan T, Geneve RL, Perry SE, Rodriguez Lopez CM. 2021. The regulation of plant vegetative phase transition and rejuvenation: miRNAs, a key regulator. Epigenomes 5:24

doi: 10.3390/epigenomes5040024
[38]

Gandikota M, Birkenbihl RP, Höhmann S, Cardon GH, Saedler H, et al. 2007. The miRNA156/157 recognition element in the 3'UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. The Plant Journal 49:683−93

doi: 10.1111/j.1365-313X.2006.02983.x
[39]

Xu M, Hu T, Zhao J, Park MY, Earley KW, et al. 2016. Developmental functions of miR156-Regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Arabidopsis thaliana. PLoS Genetics 12:e1006263

doi: 10.1371/journal.pgen.1006263
[40]

Zheng C, Ye M, Sang M, Wu R. 2019. A regulatory network for miR156-SPL module in Arabidopsis thaliana. International Journal of Molecular Sciences 20:6166

doi: 10.3390/ijms20246166
[41]

Liu H, Gao Y, Song X, Ma Q, Zhang J, et al. 2018. A novel rejuvenation approach to induce endohormones and improve rhizogenesis in mature Juglans tree. Plant Methods 14:13

doi: 10.1186/s13007-018-0280-0
[42]

Fouracre JP, He J, Chen VJ, Sidoli S, Poethig RS. 2021. VAL genes regulate vegetative phase change via miR156-dependent and independent mechanisms. Plos Genetics 17:e1009626

doi: 10.1371/journal.pgen.1009626
[43]

Wu HX, Sveriges L. 2019. Benefits and risks of using clones in forestry - a review. Scandinavian Journal of Forest Research 34:352−59

doi: 10.1080/02827581.2018.1487579
[44]

Casanova L, Suárez MP, Fernández-Cabanás VM, Morales-Sillero AM, Jiménez MR, et al. 2014. From the juvenile to the adult vegetative phase in olive seedlings: the transition along the stem axis. Spanish Journal of Agricultural Research 12:1149−57

doi: 10.5424/sjar/2014124-6363
[45]

Cheng YJ, Shang GD, Xu ZG, Yu S, Wu LY, et al. 2021. Cell division in the shoot apical meristem is a trigger for miR156 decline and vegetative phase transition in Arabidopsis. PNAS 118:e2115667118

doi: 10.1073/pnas.2115667118
[46]

Manuela D., Xu M. 2020. Juvenile leaves or adult leaves: Determinants for vegetative phase change in flowering plants. International Journal of Molecular Sciences 21:9753

doi: 10.3390/ijms21249753
[47]

Lawrence EH, Leichty AR, Doody EE, Ma C, Strauss SH, et al. 2021. Vegetative phase change in Populus tremula × alba. The New Phytologist 231:351−64

doi: 10.1111/nph.17316
[48]

Hackett WP. 1985. Juvenility, Maturation, and Rejuvenation in Woody Plants. In Horticultural Reviews, ed. Janick J. Vol. 7. Hoboken, NJ, USA: John Wiley & Sons. pp. 109−155. https://doi.org/10.1002/9781118060735.ch3

[49]

Huang HJ, Chen Y, Kuo JL, Kuo TT, Tzeng CC, et al. 1996. Rejuvenation of Sequoia sempervirens in vitro: Changes in isoesterases and isoperoxidases. Plant and Cell Physiology 37:77−80

doi: 10.1093/oxfordjournals.pcp.a028916
[50]

Fernández-Ocaña A, Carmen García-López M, Jiménez-Ruiz J, Saniger L, Macías D, et al. 2010. Identification of a gene involved in the juvenile-to-adult transition (JAT) in cultivated olive trees. Tree Genet Genomes 6:891−903

doi: 10.1007/s11295-010-0299-5
[51]

Pei D, Gu R. 2005. A Review on the Rejuvenation of Mature Trees. Chinese Bulletin of Botany 22:753−60

[52]

Kuusk V, Niinemets Ü, Valladares F. 2018. Structural controls on photosynthetic capacity through juvenile-to-adult transition and needle ageing in Mediterranean pines. Functional Ecology 32:1479−91

doi: 10.1111/1365-2435.13087
[53]

Hong H, Kang X, Wang X. 2018. Impact of Age Effect on Growth Traits, Anatomical Structure of Bark and Biochemical Parameters of Leaves in Hardwood Cuttings of White Poplar. Acta Botanica Boreali-Occidentalia Sinica 38:274−81

[54]

Romanova AK, Semenova GA, Ignat’ev AR, Novichkova NS, Fomina IR. 2016. Biochemistry and cell ultrastructure changes during senescence of Beta vulgaris L. leaf. Protoplasma 253:719−27

doi: 10.1007/s00709-015-0923-1
[55]

Lawson EJR, Poethig RS. 1995. Shoot development in plants: time for a change. Trends in Genetics 11:263−68

doi: 10.1016/S0168-9525(00)89072-1
[56]

Ye B, Zhang K, Wang J. 2020. The role of miR156 in rejuvenation in Arabidopsis thaliana. Journal of Integrative Plant Biology 62:550−55

doi: 10.1111/jipb.12855