[1]

Xu Y, Ma S, Huang M, Peng M, Bog M, et al. 2015. Species distribution, genetic diversity and barcoding in the duckweed family (Lemnaceae). Hydrobiologia 743:75−87

doi: 10.1007/s10750-014-2014-2
[2]

Appenroth K-J, Borisjuk N, Lam E. 2013. Telling duckweed apart: Genotyping technologies for the Lemnaceae. Chinese Journal of Applied Environmental Biology 19:1−10

doi: 10.3724/SP.J.1145.2013.00001
[3]

Zhang J, Azizullah A. 2020. Genetic diversity and DNA barcoding in the duckweed family. In The Duckweed Genomes, ed. Cao XH, Fourounjian P, Wang W. Switzerland: Springer. pp. 59−65. https://doi.org/10.1007/978-3-030-11045-1_5

[4]

van der Spiegel M, Noordam MY, van der Fels-Klerx HJ. 2013. Safety of novel protein sources (insects, microalgae, seaweed, duckweed, and rapeseed) and legislative aspects for their application in food and feed production. Comprehensive Reviews in Food Science and Food Safety 12:662−78

doi: 10.1111/1541-4337.12032
[5]

Bhanthumnavin K, McGarry MG. 1971. Wolffia arrhiza as a possible source of inexpensive protein. Nature 232:495

doi: 10.1038/232495a0
[6]

Appenroth KJ, Sree KS, Bog M, Ecker J, Seeliger C, et al. 2018. Nutritional value of the duckweed species of the genus Wolffia (Lemnaceae) as human food. Frontiers in Chemistry 6:483

doi: 10.3389/fchem.2018.00483
[7]

Appenroth KJ, Sree KS, Böhm V, Hammannd S, Vetter W, et al. 2017. Nutritional value of duckweeds (Lemnaceae) as human food. Food Chemistry 217:266−73

doi: 10.1016/j.foodchem.2016.08.116
[8]

Fiordelmondo E, Ceschin S, Magi GE, Mariotti F, Iaffaldano N, et al. 2022. Effects of partial substitution of conventional protein sources with duckweed (Lemna minor) meal in the feeding of rainbow trout (Oncorhynchus mykiss) on growth performances and the quality product. Plants 11:1220

doi: 10.3390/plants11091220
[9]

Mahoney R, Weeks R, Huang Q, Dai W, Cao Y, et al. 2021. Fermented duckweed as a potential feed additive with poultry beneficial bacilli probiotics. Probiotics and Antimicrobial Proteins 13:1425−32

doi: 10.1007/s12602-021-09794-4
[10]

Hassan MS, Edwards P. 1992. Evaluation of duckweed (Lemna perpusilla and Spirodela polyrrhiza) as feed for Nile tilapia (Oreochromis niloticus). Aquaculture 104:315−26

doi: 10.1016/0044-8486(92)90213-5
[11]

El-Shafai SA, Abdel-Gawad FK, Samhan F, Nasr FA. 2013. Resource recovery from septic tank effluent using duckweed-based tilapia aquaculture. Environmental Technology 34:121−29

doi: 10.1080/09593330.2012.689357
[12]

Bairagi A, Sarkar Ghosh K, Sen SK, Ray AK. 2002. Duckweed (Lemna polyrhiza) leaf meal as a source of feedstuff in formulated diets for rohu (Labeo rohita Ham.) fingerlings after fermentation with a fish intestinal bacterium. Bioresource Technology 85:17−24

doi: 10.1016/S0960-8524(02)00067-6
[13]

Roman B, Brennan RA. 2019. A beneficial by-product of ecological wastewater treatment: An evaluation of wastewater-grown duckweed as a protein supplement for sustainable agriculture. Ecological Engineering 142:100004

doi: 10.1016/j.ecoena.2019.100004
[14]

Tan D, Zhang J, Fu L, Ma S, Sun X. 2021. China Patent No. 202021317452. X.

[15]

Leng RA, Stambolie JH, Bell R. 1995. Duckweed - a potential high-protein feed resource for domestic animals and fish. Livestock Research for Rural Development 7: Article 5

[16]

Schenk RU, Hildebrandt AC. 1972. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Canadian Journal of Botany 50:199−204

doi: 10.1139/b72-026
[17]

Shiva S, Enninful R, Roth MR, Tamura P, Jagadish K, Welti R. 2018. An efficient modified method for plant leaf lipid extraction results in improved recovery of phosphatidic acid. Plant Methods 14:14

doi: 10.1186/s13007-018-0282-y
[18]

Xiao Y, Fang Y, Jin Y, Zhang G, Zhao H. 2013. Culturing duckweed in the field for starch accumulation. Industrial Crops and Products 48:183−90

doi: 10.1016/j.indcrop.2013.04.017
[19]

Pervin MA, Jahan H, Akter R, Omri A, Hossain Z. 2020. Appraisal of different levels of soybean meal in diets on growth, digestive enzyme activity, antioxidation, and gut histology of tilapia (Oreochromis niloticus). Fish Physiology and Biochemistry 46:1397−407

doi: 10.1007/s10695-020-00798-5
[20]

Duncan DB. 1955. Multiple range and multiple F-tests. Biometries 11:1−42

doi: 10.2307/3001478
[21]

Sree KS, Adelmann K, Garcia C, Lam E, Appenroth KJ. 2015. Natural variance in salt tolerance and induction of starch accumulation in duckweeds. Planta 241:1395−404

doi: 10.1007/s00425-015-2264-x
[22]

Sree KS, Appenroth KJ. 2014. Increase of starch accumulation in the duckweed Lemna minor under abiotic stress. Albanian Journal of Agricultural Sciences 13:11−4

[23]

Huang M, Fang Y, Xiao Y, Sun J, Jin Y, et al. 2014. Proteomic analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation. Industrial Crops and Products 59:299−308

doi: 10.1016/j.indcrop.2014.05.029
[24]

Tao X, Fang Y, Huang MJ, Xiao Y, Liu Y, et al. 2017. High flavonoid accompanied with high starch accumulation triggered by nutrient starvation in bioenergy crop duckweed (Landoltia punctata). BMC Genomics 18:166

doi: 10.1186/s12864-017-3559-z
[25]

Organization WH. 2007. Protein and amino acid requirements in human nutrition: Report of a joint FAO/WHO/UNU expert consultation. pp. 265

[26]

Kim HJ, Lee JY, Yoon UH, Lim SH, Kim YM. 2013. Effects of reduced prolamin on seed storage protein composition and the nutritional quality of rice. International Journal of Molecular Sciences 14:17073−84

doi: 10.3390/ijms140817073
[27]

Yue J, Li C, Zhao Q, Zhu D, Yu J. 2014. Seed-specific expression of a lysine-rich protein gene, GhLRP, from cotton significantly increases the lysine content in maize seeds. International Journal of Molecular Sciences 15:5350−65

doi: 10.3390/ijms15045350
[28]

Chang Y, Shen E, Wen L, Yu J, Zhu D, Zhao Q. 2015. Seed-specific expression of the Arabidopsis AtMAP18 gene increases both lysine and total protein content in maize. PloS One 10:e0142952

doi: 10.1371/journal.pone.0142952
[29]

Fortes-Silva R, Rosa PV, Zamora S, Sánchez-Vázquez F. 2012. Dietary self-selection of protein-unbalanced diets supplemented with three essential amino acids in Nile tilapia. Physiology & Behavior 105:639−44

doi: 10.1016/j.physbeh.2011.09.023
[30]

Potier M, Darcel N, Tomé D. 2009. Protein, amino acids and the control of food intake. Current Opinion in Clinical Nutrition and Metabolic Care 12:54−58

doi: 10.1097/MCO.0b013e32831b9e01
[31]

Saravanan S, Geurden I, Figueiredo-Silva AC, Nusantoro S, Kaushik S, et al. 2013. Oxygen consumption constrains food intake in fish fed diets varying in essential amino acid composition. PloS one 8:e72757

doi: 10.1371/journal.pone.0072757
[32]

Bauer E, Metzler-Zebeli BU, Verstegen MW, Mosenthin R. 2011. Intestinal gene expression in pigs: effects of reduced feed intake during weaning and potential impact of dietary components. Nutrition Research Reviews 24:155−75

doi: 10.1017/S0954422411000047
[33]

Dawood MAO, Magouz FI, Salem MFI, Elbialy ZI, Abdel-Daim HA. 2020. Synergetic effects of Lactobacillus plantarum and beta-glucan on digestive enzyme activity, intestinal morphology, growth, fatty acid, and glucose-related gene expression of genetically improved farmed tilapia. Probiotics and Antimicrobial Proteins 12:389−99

doi: 10.1007/s12602-019-09552-7
[34]

Santos WM, Costa LS, Lopez-Olmeda JF, Costa NCS, Santos FAC, et al. 2020. Dietary protein modulates digestive enzyme activities and gene expression in red tilapia juveniles. Animal 14:1802−10

doi: 10.1017/S1751731120000543
[35]

Einarsson S, Davies PS, Talbot C. 1996. The effect of feeding on the secretion of pepsin, trypsin and chymotrypsin in the Atlantic salmon, Salmo salar L. Fish Physiology & Biochemistry 15:439−46

doi: 10.1007/BF01875587
[36]

Santos JF, Soares KLS, Assis CRD, Guerra CAM, Lemos D, et al. 2016. Digestive enzyme activity in the intestine of Nile tilapia (Oreochromis niloticus L. ) under pond and cage farming systems. Fish Physiology and Biochemistry 42:1259−74

doi: 10.1007/s10695-016-0215-5
[37]

Zheng Q, Han C, Zhong Y, Wen R, Zhong M. 2017. Effects of dietary supplementation with green tea waste on growth, digestive enzyme and lipid metabolism of juvenile hybrid tilapia, Oreochromis niloticus × O. aureus. Fish Physiology and Biochemistry 43:361−71

doi: 10.1007/s10695-016-0292-5
[38]

Mizutani K, Toyoda M, Otake Y, Yoshioka S, Takahashi N, Mikami B. 2012. Structural and functional characterization of recombinant medaka fish alpha-amylase expressed in yeast Pichia pastoris. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1824:954−62

doi: 10.1016/j.bbapap.2012.05.005
[39]

Ferreira A, Cahú T, Xu J, Blennow A, Bezerra R. 2021. A highly stable raw starch digesting alpha-amylase from Nile tilapia (Oreochromis niloticus) viscera. Food Chemistry 354:129513

doi: 10.1016/j.foodchem.2021.129513
[40]

Liu T, Huang K, Zheng Y, Gan W, Zuo T, Wang T. 2020. Cloning of hepatic lipase and the effects of dietary nutrition on hepatic lipase expression in genetically improved farmed tilapia (Oreochromis niloticus). Fish Physiology and Biochemistry 46:921−30

doi: 10.1007/s10695-019-00759-7
[41]

Tian J, Wu F, Yang CG, Jiang M, Liu W, Wen H. 2015. Dietary lipid levels impact lipoprotein lipase, hormone-sensitive lipase, and fatty acid synthetase gene expression in three tissues of adult GIFT strain of Nile tilapia Oreochromis niloticus. Fish Physiology and Biochemistry 41:1−18

doi: 10.1007/s10695-014-0001-1
[42]

Liu S. 2012. Effects of Sophyora flavonoid levels on the growth and antioxidant capacity in hepatopancreas of tilapia (Oreochromis niloticus). Thesis. Jimei University, Fujian

[43]

Yilmaz E. 2019. Effects of dietary anthocyanin on innate immune parameters, gene expression responses, and ammonia resistance of Nile tilapia (Oreochromis niloticus). Fish & Shellfish Immunology 93:694−701

doi: 10.1016/j.fsi.2019.08.033
[44]

Ansal MD, Dhawan A, Kaur VI. 2010. Duckweed based bio-remediation of village ponds: An ecologically and economically viable integrated approach for rural development through aquaculture. Livestock Research for Rural Development 22:129

[45]

Rusoff LL, Blakeney EW Jr, Culley DD Jr. 1980. Duckweeds (Lemnaceae family): a potential source of protein and amino acids. Journal of Agriculture and Food Chemistry 28:848−50

doi: 10.1021/jf60230a040
[46]

Aldrich CG, Merchen NR, Nelson DR, Barmore JA. 1995. The effects of roasting temperature applied to whole soybeans on site of digestion by steers: II. Protein and amino acid digestion. Journal of Animal Science 73:2131−40

doi: 10.2527/1995.7372131x
[47]

Järup L. 2003. Hazards of heavy metal contamination. British Medical Bulletin 68:167−82

doi: 10.1093/bmb/ldg032
[48]

Zhang X, Hu Y, Liu Y, Chen B. 2011. Arsenic uptake, accumulation and phytofiltration by duckweed (Spirodela polyrhiza L. ). Journal of Environmental Sciences 23:601−6

doi: 10.1016/S1001-0742(10)60454-8
[49]

Yang L, Ren Q, Ma X, Wang M, Sun J, et al. 2022. New insight into the effect of riluzole on cadmium tolerance and accumulation in duckweed (Lemna turionifera). Ecotoxicology and Environmental Safety 241:113783

doi: 10.1016/j.ecoenv.2022.113783
[50]

Yang J, Li G, Xia M, Chen Y, Chen Y, et al. 2022. Combined effects of temperature and nutrients on the toxicity of cadmium in duckweed (Lemna aequinoctialis). Journal of Hazardous Materials 432:128646

doi: 10.1016/j.jhazmat.2022.128646
[51]

Charlier HA Jr, Albertson C, Thornock C, Warner L, Hurst T, et al. 2005. Comparison of the effects of arsenic (V), cadmium (II), and mercury (II) single metal and mixed metal exposure in radish, Raphanus sativus, fescue grass, Festuca ovina, and duckweed, Lemna minor. Bulletin of Environmental Contamination and Toxicology 75:474−81

doi: 10.1007/s00128-005-0777-x
[52]

Zhao X, Moates GK, Wellner N, Collins SR, Coleman MJ, et al. 2014. Chemical characterisation and analysis of the cell wall polysaccharides of duckweed (Lemna minor). Carbohydrate Polymers 111:410−18

doi: 10.1016/j.carbpol.2014.04.079
[53]

Tao X, Fang Y, Xiao Y, Jin Y, Ma X, et al. 2013. Comparative transcriptome analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation. Biotechnology for Biofuels 6:72

doi: 10.1186/1754-6834-6-72
[54]

Zhang Z, Fan Z, Li J, Yang T, Wei D, et al. 2017. Effects of dietary duckweed levels on growth performance, digestive ability, and antioxidant ability in koi carp Cyprinus carpio. Journal of Dalian Ocean University 32:416−21

doi: 10.16535/j.cnki.dlhyxb.2017.04.007
[55]

Zhang Z, Wei D, Qiao X, Bai D, Fan Z, et al. 2017. Effects of dietary duckweed levels on expression of tyrosinase gene and melanin cortisol receptors gene in koi tajsho-sanke. Fisheries Science 36:172−77

[56]

Huang B, Huang Y, Wang L. 2005. Effects of duckweed Wolffia arrhiza Wimmer dry powder in diet on growth and body color of goldfish Carassius auratu. Fisheries Science 30:617−20