[1] |
Klimaszewska K, Hargreaves C, Lelu-Walter MA, Trontin JF. 2016. Advances in Conifer Somatic Embryogenesis Since Year 2000. In In Vitro Embryogenesis in Higher Plants. Methods in Molecular Biology, eds. Germana M, Lambardi M. vol 1359. New York: Humana Press NY. pp. 131−66. https://doi.org/10.1007/978-1-4939-3061-6_7 |
[2] |
Hakman, Fowke L C, Arnold V, Eriksson T. 1985. The development of somatic embryos in tissue cultures initiated from immature embryos of Picea abies (Norway Spruce). Plant Science 38:53−59 doi: 10.1016/0168-9452(85)90079-2 |
[3] |
Varis S, Klimaszewska K, Aronen T. 2018. Somatic embryogenesis and plant regeneration from primordial shoot explants of Picea abies (L.) H. Karst. Somatic Trees. Frontiers in Plant Science 9:1551 doi: 10.3389/fpls.2018.01551 |
[4] |
Klimaszewska K, Overton C, Stewart D, Rutledge RG. 2011. Initiation of somatic embryos and regeneration of plants from primordial shoots of 10-year-old somatic white spruce and expression profiles of 11 genes followed during the tissue culture process. Planta 233:635−47 doi: 10.1007/s00425-010-1325-4 |
[5] |
Attree SM, Bekkaoui F, Dunstan DI, Fowke LC. 1987. Regeneration of somatic embryos from protoplasts isolated from an embryogenic suspension culture of white spruce (Picea glauca). Plant Cell Reports 6:480−83 doi: 10.1007/BF00272788 |
[6] |
Lelu-Walter MA, Thompson D, Harvengt L, Sanchez L, Toribio M, et al. 2013. Somatic embryogenesis in forestry with a focus on Europe: state-of-the-art, benefits, challenges and future direction. Tree Genetics & Genomes 9:883−99 doi: 10.1007/s11295-013-0620-1 |
[7] |
Denchev P, Grossnickle SC. 2019. Somatic embryogenesis for conifer seedling production: the biology of scaling. Reforesta 7:109−37 doi: 10.21750/refor.7.08.70 |
[8] |
Xia Y, Zhang J, Jing D, Kong L, Zhang S, et al. 2016. Plant regeneration of Picea asperata Mast. by somatic embryogenesis. Trees 31:299−312 doi: 10.1007/s00468-016-1484-4 |
[9] |
von Arnold S, Clapham D. 2008. Spruce embryogenesis. In Plant Embryogenesis. Methods In Molecular Biology, ed. Suárez MF, Bozhkov PV. vol 427. New York: Humana Press. pp. 31−47. https://doi.org/10.1007/978-1-59745-273-1_3 |
[10] |
Rupps A, Raschke J, Rümmler M, Linke B, Zoglauer K. 2016. Identification of putative homologs of Larix decidua to BABYBOOM (BBM), LEAFY COTYLEDON1 (LEC1), WUSCHEL-related HOMEOBOX2 (WOX2) and SOMATIC EMBRYOGENESIS RECEPTOR-like KINASE (SERK) during somatic embryogenesis. Planta 243:473−88 doi: 10.1007/s00425-015-2409-y |
[11] |
Trontin JF, Klimaszewska K, Morel A, Hargreaves C, Lelu-Walter MA. 2016. Molecular aspects of conifer zygotic and somatic embryo development: A review of genome-wide approaches and recent insights. In In Vitro Embryogenesis in Higher Plants. Methods in Molecular Biology, eds. Germana M, Lambardi M. vol 1359. New York: Humana Press, NY. pp. 167−207. https://doi.org/10.1007/978-1-4939-3061-6_8 |
[12] |
Yakovlev IA, Carneros E, Lee Y, Olsen JE, Fossdal CG. 2016. Transcriptional profiling of epigenetic regulators in somatic embryos during temperature induced formation of an epigenetic memory in Norway spruce. Planta 243:1237−49 doi: 10.1007/s00425-016-2484-8 |
[13] |
Klimaszewska K, Noceda C, Pelletier G, Label P, Rodriguez R, et al. 2009. Biological characterization of young and aged embryogenic cultures of Pinus pinaster (ait.). In Vitro Cellular and Development Biology - Plant 45:20−33 doi: 10.1007/s11627-008-9158-6 |
[14] |
Uddenberg D, Valladares S, Abrahamsson M, Sundström JF, Sundås-Larsson A, et al. 2011. Embryogenic potential and expression of embryogenesis-related genes in conifers are affected by treatment with a histone deacetylase inhibitor. Planta 234:527−39 doi: 10.1007/s00425-011-1418-8 |
[15] |
He C, Chen X, Huang H, Xu L. 2012. Reprogramming of H3K27me3 is critical for acquisition of pluripotency from cultured Arabidopsis tissues. PLoS Genetics 8:e1002911 doi: 10.1371/journal.pgen.1002911 |
[16] |
Mozgová I, Muñoz-Viana R, Hennig L. 2017. PRC2 represses hormone-induced somatic embryogenesis in vegetative tissue of Arabidopsis thaliana. PLoS Genetics 13:e1006562 doi: 10.1371/journal.pgen.1006562 |
[17] |
Nakamura M, Batista RA, Kohler C, Hennig L. 2020. Polycomb Repressive Complex 2-mediated histone modification H3K27me3 is associated with embryogenic potential in Norway spruce. Journal of Experimental Botany 71:6366−78 doi: 10.1093/jxb/eraa365 |
[18] |
Elhiti M, Stasolla C, Wang A. 2013. Molecular regulation of plant somatic embryogenesis. In Vitro Cellular & Developmental Biology - Plant 49:631−42 doi: 10.1007/s11627-013-9547-3 |
[19] |
Dyachok JV, Wiweger M, Kenne L, von Arnold S. 2002. Endogenous Nod-factor-like signal molecules promote early somatic embryo development in Norway spruce. Plant Physiology 128:523−33 doi: 10.1104/pp.010547 |
[20] |
van Hengel AJ, Tadesse Z, Immerzeel P, Schols H, van Kammen A, et al. 2001. N-acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. Plant Physiology 125:1880−90 doi: 10.1104/pp.125.4.1880 |
[21] |
Wiweger M, Farbos I, Ingouff M, Lagercrantz U, Von Arnold S. 2003. Expression of Chia4-Pa chitinase genes during somatic and zygotic embryo development in Norway spruce (Picea abies): similarities and differences between gymnosperm and angiosperm class IV chitinases. Journal of Experimental Botany 54:2691−99 doi: 10.1093/jxb/erg299 |
[22] |
Umehara M, Ogita S, Sasamoto H, Koshino H, Asami T, et al. 2005. Identification of a novel factor, vanillyl benzyl ether, which inhibits somatic embryogenesis of Japanese larch (Larix leptolepis Gordon). Plant and Cell Physiology 46:445−53 doi: 10.1093/pcp/pci041 |
[23] |
Santos MO, Aragão FJ. 2009. Role of SERK genes in plant environmental response. Plant Signaling & Behavior 4:1111−13 doi: 10.4161/psb.4.12.9900 |
[24] |
Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, et al. 2002. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. The Plant Cell 14:1737−49 doi: 10.1105/tpc.001941 |
[25] |
Nole-Wilson S, Tranby TL, Krizek BA. 2005. AINTEGUMENTA-like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states. Plant Molecular Biology 57:613−28 doi: 10.1007/s11103-005-0955-6 |
[26] |
Iwase A, Mitsuda N, Koyama T, Hiratsu K, Kojima M, et al. 2011. The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Current Biology 21:508−14 doi: 10.1016/j.cub.2011.02.020 |
[27] |
Iwase A, Ohme-Takagi M, Sugimoto K. 2011. WIND1: A key molecular switch for plant cell dedifferentiation. Plant Signaling & Behavior 6:1943−45 doi: 10.4161/psb.6.12.18266 |
[28] |
Gaj MD, Zhang S, Harada JJ, Lemaux PG. 2005. Leafy cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis. Planta 222:977−88 doi: 10.1007/s00425-005-0041-y |
[29] |
Kwong RW, Bui AQ, Lee H, Kwong LW, Fischer RL, et al. 2003. LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. The Plant Cell 15:5−18 doi: 10.1105/tpc.006973 |
[30] |
Verma S, Attuluri VPS, Robert HS. 2022. Transcriptional control of Arabidopsis seed development. Planta 255:90 doi: 10.1007/s00425-022-03870-x |
[31] |
Kagaya Y, Toyoshima R, Okuda R, Usui H, Yamamoto A, et al. 2005. LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3. Plant and Cell Physiology 46:399−406 doi: 10.1093/pcp/pci048 |
[32] |
Suzuki M, Wang HHY, McCarty DR. 2007. Repression of the LEAFY COTYLEDON 1/B3 regulatory network in plant embryo development by VP1/ABSCISIC ACID INSENSITIVE 3-LIKE B3 genes. Plant Physiology 143:902−11 doi: 10.1104/pp.106.092320 |
[33] |
Laux T, Mayer KF, Berger J, Jürgens G. 1996. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87−96 doi: 10.1242/dev.122.1.87 |
[34] |
Breuninger H, Rikirsch E, Hermann M, Ueda M, Laux T. 2008. Differential expression of WOX genes mediates apical-basal axis formation in the Arabidopsis embryo. Developmental Cell 14:867−76 doi: 10.1016/j.devcel.2008.03.008 |
[35] |
Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T, et al. 2007. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446:811−14 doi: 10.1038/nature05703 |
[36] |
Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. 1997. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. The Plant Cell 9:841−57 doi: 10.1105/tpc.9.6.841 |
[37] |
Aida M, Ishida T, Tasaka M. 1999. Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development 126:1563−70 doi: 10.1242/dev.126.8.1563 |
[38] |
Daimon Y, Takabe K, Tasaka M. 2003. The CUP-SHAPED COTYLEDON genes promote adventitious shoot formation on calli. Plant and Cell Physiology 44:113−21 doi: 10.1093/pcp/pcg038 |
[39] |
Lu P, Porat R, Nadeau JA, O'Neill SD. 1996. Identification of a meristem L1 layer-specific gene in Arabidopsis that is expressed during embryonic pattern formation and defines a new class of homeobox genes. The Plant Cell 8:2155−68 doi: 10.1105/tpc.8.12.2155 |
[40] |
Kubo H, Peeters AJM, Aarts MGM, Pereira A, Koornneef M. 1999. ANTHOCYANINLESS2, a homeobox gene affecting anthocyanin distribution and root development in Arabidopsis. The Plant Cell 11:1217−26 doi: 10.1105/tpc.11.7.1217 |
[41] |
Long JA, Moan EI, Medford JI, Barton MK. 1996. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66−69 doi: 10.1038/379066a0 |
[42] |
Dolan L. 2001. Root patterning: SHORT ROOT on the move. Current Biology 11:R983−R985 doi: 10.1016/S0960-9822(01)00580-2 |
[43] |
Wu J, Yang J, Cho WC, Zheng Y. 2020. Argonaute proteins: Structural features, functions and emerging roles. Journal of Advanced Research 24:317−24 doi: 10.1016/j.jare.2020.04.017 |
[44] |
Cairney J, Pullman GS. 2007. The cellular and molecular biology of conifer embryogenesis. New Phytologist 176:511−36 doi: 10.1111/j.1469-8137.2007.02239.x |
[45] |
Larsson E, Sitbon F, Ljung K, von Arnold S. 2008. Inhibited polar auxin transport results in aberrant embryo development in Norway spruce. New Phytologist 177:356−66 doi: 10.1111/j.1469-8137.2007.02289.x |
[46] |
Bozhkov PV, Filonova LH, Suarez MF. 2005. Programmed cell death in plant embryogenesis. Current Topics in Developmental Biology 67:135−79 doi: 10.1016/s0070-2153(05)67004-4 |
[47] |
Filonova LH, Bozhkov PV, Brukhin VB, Daniel G, Zhivotovsky B, et al. 2000. Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce. Journal of Cell Science 113 Pt 24:4399−411 doi: 10.1242/jcs.113.24.4399 |
[48] |
Minina EA, Filonova LH, Fukada K, Savenkov EI, Gogvadze V, et al. 2013. Autophagy and metacaspase determine the mode of cell death in plants. The Journal of Cell Biology 203:917−27 doi: 10.1083/jcb.201307082 |
[49] |
Minina EA, Stael S, Van Breusegem F, Bozhkov PV. 2014. Plant metacaspase activation and activity. In Caspases, Paracaspases, and Metacaspases. Methods in Molecular Biology, eds. Bozhkov PV, Salvesen G. vol 1133. New York: Humana Press, NY. pp. 237−53. https://doi.org/10.1007/978-1-4939-0357-3_15 |
[50] |
Mayer KF, Schoof H, Haecker A, Lenhard M, Jurgens G, Laux T. 1998. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805−15 doi: 10.1016/S0092-8674(00)81703-1 |
[51] |
Hedman H, Zhu T, von Arnold S, Sohlberg JJ. 2013. Analysis of the WUSCHEL-RELATED HOMEOBOX gene family in the coniferPicea abies reveals extensive conservation as well as dynamic patterns. BMC Plant Biology 13:89 doi: 10.1186/1471-2229-13-89 |
[52] |
Alvarez JM, Bueno N, Canas RA, Avila C, Canovas FM, Ordas RJ. 2018. Analysis of the WUSCHEL-RELATED HOMEOBOX gene family in Pinus pinaster: New insights into the gene family evolution. Plant Physiology and Biochemistry 123:304−18 doi: 10.1016/j.plaphy.2017.12.031 |
[53] |
Nardmann J, Reisewitz P, Werr W. 2009. Discrete shoot and root stem cell-promoting WUS/WOX5 functions are an evolutionary innovation of angiosperms. Molecular Biology and Evolution 26:1745−55 doi: 10.1093/molbev/msp084 |
[54] |
Zhu T, Moschou PN, Alvarez JM, Sohlberg JJ, von Arnold S. 2016. WUSCHEL-RELATED HOMEOBOX 2 is important for protoderm and suspensor development in the gymnosperm Norway spruce. BMC Plant Biology 16:19 doi: 10.1186/s12870-016-0706-7 |
[55] |
Zhu T, Moschou PN, Alvarez JM, Sohlberg JJ, von Arnold S. 2014. WUSCHEL-RELATED HOMEOBOX 8/9 is important for proper embryo patterning in the gymnosperm Norway spruce. Journal of Experimental Botany 65:6543−52 doi: 10.1093/jxb/eru371 |
[56] |
Weimer AK, Nowack MK, Bouyer D, Zhao X, Harashima H, et al. 2012. Retinoblastoma related1 regulates asymmetric cell divisions in Arabidopsis. The Plant Cell 24:4083−95 doi: 10.1105/tpc.112.104620 |
[57] |
Yeats TH, Rose JKC. 2013. The formation and function of plant cuticles. Plant Physiology 163:5−20 doi: 10.1104/pp.113.222737 |
[58] |
Sabala I, Elfstrand M, Farbos I, Clapham D, von Arnold S. 2000. Tissue-specific expression of Pa18, a putative lipid transfer protein gene, during embryo development in Norway spruce (Picea abies). Plant Molecular Biology 42:461−78 doi: 10.1023/A:1006303702086 |
[59] |
Ingouff M, Farbos I, Wiweger M, von Arnold S. 2003. The molecular characterization of PaHB2, a homeobox gene of the HD-GL2 family expressed during embryo development in Norway spruce. Journal of Experimental Botany 54:1343−50 doi: 10.1093/jxb/erg145 |
[60] |
Iida H, Yoshida A, Takada S. 2019. ATML1 activity is restricted to the outermost cells of the embryo through post-transcriptional repressions. Development 146:dev169300 doi: 10.1242/dev.169300 |
[61] |
Thoma S, Hecht U, Kippers A, Botella J, De Vries S, et al. 1994. Tissue-specific expression of a gene encoding a cell wall-localized lipid transfer protein from Arabidopsis. Plant Physiology 105:35−45 doi: 10.1104/pp.105.1.35 |
[62] |
Guillet-Claude C, Isabel N, Pelgas B, Bousquet J. 2004. The evolutionary implications of knox-I gene duplications in conifers: correlated evidence from phylogeny, gene mapping, and analysis of functional divergence. Molecular Biology and Evolution 21:2232−45 doi: 10.1093/molbev/msh235 |
[63] |
Larsson E, Sitbon F, von Arnold S. 2012. Differential regulation of Knotted1-like genes during establishment of the shoot apical meristem in Norway spruce (Picea abies). Plant Cell Reports 31:1053−60 doi: 10.1007/s00299-011-1224-6 |
[64] |
Belmonte MF, Tahir M, Schroeder D, Stasolla C. 2007. Overexpression of HBK3, a class I KNOX homeobox gene, improves the development of Norway spruce (Picea abies) somatic embryos. Journal of Experimental Botany 58:2851−61 doi: 10.1093/jxb/erm099 |
[65] |
Larsson E, Sundström trom JF, Sitbon F, von Arnold S. 2012. Expression of PaNAC01, a Picea abies CUP-SHAPED COTYLEDON orthologue, is regulated by polar auxin transport and associated with differentiation of the shoot apical meristem and formation of separated cotyledons. Annals of Botany 110:923−34 doi: 10.1093/aob/mcs151 |
[66] |
Tahir M, Law DA, Stasolla C. 2006. Molecular characterization of PgAGO, a novel conifer gene of the Argonaute family expressed in apical cells and required for somatic embryo development in spruce. Tree Physiology 26:1257−70 doi: 10.1093/treephys/26.10.1257 |
[67] |
Zhang J, Zhang S, Han S, Wu T, Li X, et al. 2012. Genome-wide identification of microRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis. Planta 236:647−57 doi: 10.1007/s00425-012-1643-9 |
[68] |
Abarca D, Pizarro A, Hernández I, Sánchez C, Solana SP, et al. 2014. The GRAS gene family in pine: transcript expression patterns associated with the maturation-related decline of competence to form adventitious roots. BMC Plant Biology 14:354 doi: 10.1186/s12870-014-0354-8 |
[69] |
Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, et al. 2013. The Norway spruce genome sequence and conifer genome evolution. Nature 497:579−84 doi: 10.1038/nature12211 |
[70] |
Birol I, Raymond A, Jackman SD, Pleasance S, Coope R, et al. 2013. Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics 29:1492−97 doi: 10.1093/bioinformatics/btt178 |
[71] |
Niu S, Li J, Bo W, Yang W, Zuccolo A, et al. 2022. The Chinese pine genome and methylome unveil key features of conifer evolution. Cell 185:204−217.E14 doi: 10.1016/j.cell.2021.12.006 |
[72] |
Egertsdotter U, Ahmad I, Clapham D. 2019. Automation and Scale Up of Somatic Embryogenesis for Commercial Plant Production, With Emphasis on Conifers. Frontiers in Plant Science 10:109 doi: 10.3389/fpls.2019.00109 |