[1] |
Wang Z, Miao H, Liu J, Xu B, Yao X, et al. 2019. Musa balbisiana genome reveals subgenome evolution and functional divergence. Nature Plants 5:810−21 doi: 10.1038/s41477-019-0452-6 |
[2] |
Heslop-Harrison JS, Schwarzacher T. 2007. Domestication, genomics and the future for banana. Annals of Botany 100:1073−84 doi: 10.1093/aob/mcm191 |
[3] |
Ahmar S, Gill R, Jung K, Faheem A, Qasim M, et al. 2020. Conventional and molecular techniques from simple breeding to speed breeding in crop plants: Recent advances and future outlook. International journal of Molecular Sciences 21:2590 doi: 10.3390/ijms21072590 |
[4] |
Muguerza MB, Gondo T, Ishigaki G, Shimamoto Y, Umami N, et al. 2022. Tissue culture and somatic embryogenesis in warm-season grasses—Current status and its applications: A review. Plants 11:1263 doi: 10.3390/plants11091263 |
[5] |
Tripathi JN, Oduor RO, Tripathi L. 2015. A high-throughput regeneration and transformation platform for production of genetically modified banana. Frontiers in Plant Science 6:1025 doi: 10.3389/fpls.2015.01025 |
[6] |
Tripathi L, Ntui VO, Tripathi JN. 2019. Application of genetic modification and genome editing for developing climate-smart banana. Food and Energy Security 8:e00168 doi: 10.1002/fes3.168 |
[7] |
Juarez-Escobar J, Bojórquez-Velázquez E, Elizalde-Contreras JM, Guerrero-Analco JA, Loyola-Vargas VM, et al. 2022. Current proteomic and metabolomic knowledge of zygotic and somatic embryogenesis in plants. International Journal of Molecular Sciences 22:11807 doi: 10.3390/ijms222111807 |
[8] |
Ramírez-Villalobos M, de García E. 2009. Secondary somatic embryogenesis in banana cien-bta-03 (Musa sp. AAAA) and regeneration of plants. ISHS Acta Horticulturae 829:45−50 doi: 10.17660/actahortic.2009.829.4 |
[9] |
Cronauer-Mitra SS, Krikorian AD. 1988. Plant regeneration via somatic embryogenesis in the seeded diploid banana Musa ornata Roxb. Plant Cell Reports 7:23−25 doi: 10.1007/BF00272970 |
[10] |
Escalant JV, Teisson C. 1989. Somatic embryogenesis and plants from immature zygotic embryos of the species Musa acuminata and Musa balbisiana. Plant Cell Reports 7:665−68 doi: 10.1007/BF00272056 |
[11] |
Navarro C, Escobedo RM, Mayo A. 1997. In vitro plant regeneration from embryogenic cultures of a diploid and a triploid, Cavendish banana. Plant Cell, Tissue and Organ Culture 51:17−25 doi: 10.1023/A:1005965030075 |
[12] |
Uma S, Lakshmi S, Saraswathi MS, Akbar A, Mustaffa MM. 2012. Plant regeneration through somatic embryogenesis from immature and mature zygotic embryos of Musa acuminata ssp. burmannica. In Vitro Cellular & Developmental Biology - Plant 48:539−45 doi: 10.1007/s11627-012-9462-z |
[13] |
Krikorian AD, Scott ME. 1995. Somatic embryogenesis in bananas and plantains (Musa Clones and Species). In Somatic embryogenesis and synthetic seed II. Biotechnology in Agriculture and Forestry, ed. Bajaj YPS. vol 31. Heidelberg: Springer Berlin. pp 183–95. https://doi.org/10.1007/978-3-642-78643-3_16 |
[14] |
Escobedo-GraciaMedrano RM, Maldonado-Borges JI, Burgos-Tan MJ, Valadez-González N, Ku-Cauich JR. 2014. Using flow cytometry and cytological analyses to assess the genetic stability of somatic embryo-derived plantlets from embryogenic Musa acuminata Colla (AA) ssp. malaccensis cell suspension cultures. Plant Cell, Tissue and Organ Culture 116:175−85 doi: 10.1007/s11240-013-0394-z |
[15] |
Novak FJ, Afza R, Van Duren M, Perea-Dallos M, Conger BV, et al. 1989. Somatic embryogenesis and plant regeneration in suspension cultures of dessert (AA and AAA) and cooking (ABB) bananas (Musa spp. ). Bio/Technology 7:154−59 doi: 10.1038/nbt0289-154 |
[16] |
Ma SS. 1991. Somatic embryogenesis and plant regeneration from cell suspension culture of banana. Proceedings of Symposium on Tissue culture of horticultural crops, Taipei, Taiwan, 8−9 March 1988. Department of Agriculture, National Taiwan university. pp. 181−88 |
[17] |
Escalant JV, Teisson C, Cote F. 1994. Amplified somatic embryogenesis from male flowers of triploid banana and plantain cultivars (Musa spp.). In Vitro – Plant 30:181−86 doi: 10.1007/BF02823029 |
[18] |
Côte FX, Domergue R, Monmarson S, Schwendiman J, Teisson C, et al. 1996. Embryogenic cell suspensions from the male flower of Musa AAA cv. Grand nain. Physiologia Plantarum 97:285−90 doi: 10.1034/j.1399-3054.1996.970211.x |
[19] |
Grapin A, Ortíz J, Lescot T, Ferriere N, Côté F. 2000. Recovery and regeneration of embryogenic cultures from female flowers of False Horn Plantain. Plant Cell, Tissue and Organ Culture 61:237−44 doi: 10.1023/A:1006423304033 |
[20] |
Becker DK, Dugdale B, Smith MK, Harding RM, Dale JL. 2000. Genetic transformation of Cavendish banana (Musa spp. AAA group) cv. Grand Nain via microprojectile bombardment. Plant Cell Reports 19:229−34 doi: 10.1007/s002990050004 |
[21] |
Khalil S, Cheah K, Perez E, Gaskill D, Hu J. 2002. Regeneration of banana (Musa spp. AAB cv. Dwarf Brazilian) via secondary somatic embryogenesis. Plant Cell Reports 20:1128−34 doi: 10.1007/s00299-002-0461-0 |
[22] |
Dhed'a D, Dumortier F, Panis B, Vuylsteke D. 1991. Plant regeneration in cell suspension cultures of the cooking banana cv. Bluggoe (Musa spp. ABB group). Fruits 46:125−35 |
[23] |
Schoofs H, Panis B, Swennen R. 1998. Competence of scalps for somatic embryogenesis in Musa. ISHS Acta Horticulturae 490:475−84 doi: 10.17660/ActaHortic.1998.490.50 |
[24] |
Pérez-Hernández JB, Rosell-García P. 2008. Inflorescence proliferation for somatic embryogenesis induction and suspension-derived plant regeneration from banana (Musa AAA, cv. 'Dwarf Cavendish') male flowers. Plant Cell Reports 27:965−71 doi: 10.1007/s00299-008-0509-x |
[25] |
Divakaran SP, Nair AS. 2011. Somatic embryogenesis from bract cultures in diploid Musa acuminata cultivars from South India. Scientia Horticulturae 131:99−102 doi: 10.1016/j.scienta.2011.09.028 |
[26] |
Remakanthan A, Menon TG, Soniya EV. 2014. Somatic embryogenesis in banana (Musa acuminata AAA cv. Grand Naine): effect of explant and culture conditions. In Vitro Cellular & Developmental Biology − Plant 50:127−36 doi: 10.1007/s11627-013-9546-4 |
[27] |
Xu C, Panis B, Strosse H, Li H, Xiao H, et al. 2005. Establishment of embryogenic cell suspensions and plant regeneration of the dessert banana ‘Williams’ (Musa AAA group). The Journal of Horticultural Science and Biotechnology 80:551−56 doi: 10.1080/14620316.2005.11511972 |
[28] |
Wei Y, Huang X, Li J, Xiao W, Li X. 2005. The induction of multiple buds and somatic embryogenesis of Musa AAB Silk 'Guoshanxiang'. Acta Horticulturae Sinica 32:414−19 doi: 10.16420/j.issn.0513-353x.2005.03.007 |
[29] |
Kulkarni VM, Suprasanna P, Bapat VA. 2006. Plant regeneration through multiple shoot formation and somatic embryogenesis in a commercially important and endangered Indian banana cv. 'Rajeli'. Current Science (India) 90:842−46 |
[30] |
Strosse H, Schoofs H, Panis B, Andre E, Reyniers K, et al. 2006. Development of embryogenic cell suspensions from shoot meristematic tissue in bananas and plantains (Musa spp.). Plant Science 170:104−12 doi: 10.1016/j.plantsci.2005.08.007 |
[31] |
Tripathi JN, Muwonge A, Tripathi L. 2012. Efficient regeneration and transformation of plantain cv. "Gonja manjaya" (Musa spp. AAB) using embryogenic cell suspensions. In Vitro Cellular & Developmental Biology - Plant |
[32] |
Kulkarni VM, Bapat VA. 2013. Somatic embryogenesis and plant regeneration from cell suspension cultures of Rajeli (AAB), an endangered banana cultivar. Journal of Plant Biochemistry and Biotechnology 22:132−37 doi: 10.1007/s13562-012-0119-0 |
[33] |
Namanya P, Mutumba G, Magambo SM, Tushemereirwe W. 2014. Developing a cell suspension system for Musa-AAA-EA cv. 'Nakyetengu': a critical step for genetic improvement of Matooke East African Highland bananas. In Vitro Cellular & Developmental Biology - Plant 50:442−50 doi: 10.1007/s11627-014-9598-0 |
[34] |
Nandhakumar N, Kumar K, Sudhakar D, Soorianathasundaram K. 2018. Plant regeneration, developmental pattern and genetic fidelity of somatic embryogenesis derived Musa spp. Journal of Genetic Engineering and Biotechnology 16:587−98 doi: 10.1016/j.jgeb.2018.10.001 |
[35] |
Strosse H, Domergue R, Panis B, Escalant JV, Côte FX. 2003. Banana and plantain embryogenic cell suspensions, INIBAP Technical Guidelines 8. The International Network for the Improvement of Banana and Plantain, Montpellier, France. |
[36] |
Chong B, Gómez R, Reyes M, Bermúdez I, Gallardo J, et al. 2005. New methodology for the establishment of cell suspensions of Grand Naine (AAA). InfoMusa 14:13−17 |
[37] |
Jalil M, Khalid N, Othman RY. 2003. Plant regeneration from embryogenic suspension cultures of Musa acuminata cv. Mas (AA). Plant Cell, Tissue and Organ Culture 75:209−14 doi: 10.1023/A:1025814922547 |
[38] |
Shivani, Tiwaria S. 2019. Enhanced Agrobacterium-mediated transformation efficiency of banana cultivar Grand Naine by reducing oxidative stress. Scientia Horticulturae 246:675−85 doi: 10.1016/j.scienta.2018.11.024 |
[39] |
Youssef MA, James A, Mayo-Mosqueda A, Ku-Cauich JR, Grijalva-Arango R, et al. 2010. Influence of genotype and age of explant source on the capacity for somatic embryogenesis of two Cavendish banana cultivars (Musa acuminata Colla, AAA). African Journal of Biotechnology 9:2216 |
[40] |
Jafari N, Othman RY, Tan BC, Khalid N. 2015. Morphohistological and molecular profiles during the developmental stages of somatic embryogenesis of Musa acuminata cv. 'Berangan' (AAA). Acta Physiologiae Plantarum 37:45 doi: 10.1007/s11738-015-1796-9 |
[41] |
Wei Y, Yang H, Huang B, Huang X, Huang X, et al. 2007. Effect of pocloram, ABA and TDZ on somatic embryogenes of banana. Acta Horticulturae Sinica 34:81−86 doi: 10.16420/j.issn.0513-353x.2007.01.017 |
[42] |
Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15:473−97 doi: 10.1111/j.1399-3054.1962.tb08052.x |
[43] |
Gamborg OL, Miller RA, Ojima K. 1968. Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research 50:151−58 doi: 10.1016/0014-4827(68)90403-5 |
[44] |
Lloyd G, McCown B. 1981. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. Proceeding of the International Plant Propagation Society 30:421−27 |
[45] |
Schenk RU, Hildebrandt AC. 1972. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Canadian Journal of Botany 50:199−204 doi: 10.1139/b72-026 |
[46] |
Husin N, Jalil M, Othman RY, Khalid N. 2014. Enhancement of regeneration efficiency in banana (Musa acuminata cv. Berangan) by using proline and glutamine. Scientia Horticulturae 168:33−37 doi: 10.1016/j.scienta.2014.01.013 |
[47] |
Zhao H, Peng M, Zeng H, Zhu Y. 2010. Plant regeneration through somatic embryogenesis of Baxi banana sucker. Journal of Fruit Science 27:730−34 |
[48] |
Maldonado-Borges JI, Ku-Cauich JR, Escobedo-GraciaMedrano RM. 2013. Annotation of differentially expressed genes in the somatic embryogenesis of Musa and their location in the banana genome. The Scientific World Journal 2013:535737 doi: 10.1155/2013/535737 |
[49] |
Shivani, Awasthi P, Sharma V, Kaur N, Kaur N, et al. 2017. Genome-wide analysis of transcription factors during somatic embryogenesis in banana (Musa spp. ) cv. Grand Naine. PLoS One 12(8):e0182242 doi: 10.1371/journal.pone.0182242 |
[50] |
Shivani, Kaur N, Awasthi P, Tiwari S. 2018. Identification and expression analysis of genes involved in somatic embryogenesis of banana. Acta Physiologiae Plantarum 40:139 doi: 10.1007/s11738-018-2714-8 |
[51] |
Kumaravel M, Uma S, Backiyarani S, Saraswathi MS, Vaganan MM, et al. 2017. Differential proteome analysis during early somatic embryogenesis in Musa spp. AAA cv. Grand Naine. Plant Cell Reports 36:163−78 doi: 10.1007/s00299-016-2067-y |
[52] |
Kumaravel M, Uma S, Backiyarani S, Saraswathi MS. 2019. Molecular analysis of somatic embryogenesis through proteomic approach and optimization of protocol in recalcitrant Musa spp. Physiologia Plantarum 167:282−301 doi: 10.1111/ppl.12966 |
[53] |
Kumaravel M, Uma S, Backiyarani S, Saraswathi MS. 2020. Proteomic analysis of somatic embryo development in Musa spp. cv. Grand Naine (AAA). Scientific Reports 10:4501 doi: 10.1038/s41598-020-61005-2 |
[54] |
Panis B, Withers LA, Langhe ED. 1990. Cryopreservation of Musa suspension cultures and subsequent regeneration of plants. Cryoletters 11:337−50 |
[55] |
Li Y, Wei Y, Hu G, Chen H, Xu C. 2010. Plant regeneration via somatic embryogenesis after cryoperseration of embryogenic cell suspensions of banana (Musa spp. AAA) by vitrification and the genetic stability of regenerated plant. Acta Horticulturae Sinica 37:899−905 doi: 10.16420/j.issn.0513-353x.2010.06.006 |
[56] |
Megia R, Haïcour R, Tizroutine S, Trang VB, Rossignol L, et al. 1993. Plant regeneration from cultured protoplasts of the cooking banana cv. Bluggoe (Musa spp., ABB group). Plant Cell Reports 13:41−44 doi: 10.1007/BF00232313 |
[57] |
Panis B, Van Wauwe A, Swennen R. 1993. Plant regeneration through direct somatic embryogenesis from protoplasts of banana (Musa spp.). Plant Cell Reports 12:403−7 doi: 10.1007/bf00234701 |
[58] |
Xiao W, Huang X, Wei Y. 2009. Progress in protoplast culture and somatic hybridization in banana (Musa spp. ). Journal of Fruit Science 26:369−74 |
[59] |
Matsumoto K, Vilarinhos AD, Oka S. 2002. Somatic hybridization by electrofusion of banana protoplasts. Euphytica 125:317−24 doi: 10.1023/A:1016071624090 |
[60] |
Assani A, Chabane D, Haïcour R, Bakry F, Wenzel G, et al. 2005. Protoplast fusion in banana (Musa spp.): comparison of chemical (PEG: polyethylene glycol) and electrical procedure. Plant Cell, Tissue and Organ Culture 83:145−51 doi: 10.1007/s11240-005-4633-9 |
[61] |
Wu S, Zhu H, Liu J, Yang Q, Shao X, et al. 2020. Establishment of a PEG-mediated protoplast transformation system based on DNA and CRISPR/Cas9 ribonucleoprotein complexes for banana. BMC Plant Biology 20:425 doi: 10.1186/s12870-020-02609-8 |
[62] |
Wang X, Yu R, Li J. 2021. Using genetic engineering techniques to develop banana cultivars with Fusarium wilt resistance and ideal plant architecture. Frontiers in Plant Science 11:617528 doi: 10.3389/fpls.2020.617528 |
[63] |
Dale J, Paul JY, Dugdale B, Harding R. 2017. Modifying Bananas: From transgenics to organics. Sustainability 9:333 doi: 10.3390/su9030333 |
[64] |
Tripathi L, Atkinson H, Roderick H, Kubiriba J, Tripathi JN. 2017. Genetically engineered bananas resistant to Xanthomonas wilt disease and nematodes. Food and Energy Security 6:37−47 doi: 10.1002/fes3.101 |
[65] |
Jekayinoluwa T, Tripathi L, Tripathi JN, Ntui VO, Obiero G, et al. 2020. RNAi technology for management of banana bunchy top disease. Food and Energy Security 9:e247 doi: 10.1002/fes3.247 |
[66] |
Jekayinoluwa T, Tripathi JN, Dugdale B, Obiero G, Muge E, et al. 2021. Transgenic expression of dsRNA targeting the Pentalonia nigronervosa acetylcholinesterase gene in banana and plantain reduces aphid populations. Plants 10:613 doi: 10.3390/plants10040613 |
[67] |
Chakrabarti A, Ganapathi TR, Mukherjee PK, Bapat VA. 2003. MSI-99, a magainin analogue, imparts enhanced disease resistance in transgenic tobacco and banana. Planta 216:587−96 doi: 10.1007/s00425-002-0918-y |
[68] |
Maziah M, Sariah M, Sreeramanan S. 2007. Transgenic banana Rastali (AAB) with β-1,3-glucanase gene for tolerance to Fusarium wilt race 1 disease via Agrobacterium-mediated transformation system. Plant Pathology Journal 6:271−82 doi: 10.3923/ppj.2007.271.282 |
[69] |
Paul JY, Becker DK, Dickman MB, Harding RM, Khanna HK, et al. 2011. Apoptosis-related genes confer resistance to Fusarium wilt in transgenic 'Lady Finger' bananas. Plant Biotechnology Journal 9:1141−48 doi: 10.1111/j.1467-7652.2011.00639.x |
[70] |
Ghag SB, Shekhawat UKS, Ganapathi TR. 2012. Petunia floral defensins with unique prodomains as novel candidates for development of fusarium wilt resistance in transgenic banana plants. PLoS One 7:e39557 doi: 10.1371/journal.pone.0039557 |
[71] |
Ghag SB, Shekhawat UK, Ganapathi TR. 2014a. Host-induced post-transcriptional hairpin RNA-mediated gene silencing of vital fungal genes confers efficient resistance against Fusarium wilt in banana. Plant Biotechnology Journal 12:541−53 doi: 10.1111/pbi.12158 |
[72] |
Ghag SB, Shekhawat UKS, Ganapathi TR. 2014b. Native cell-death genes as candidates for developing wilt resistance in transgenic banana plants. AoB PLANTS 6:plu037 doi: 10.1093/aobpla/plu037 |
[73] |
Ghag SB, Shekhawat UKS, Ganapathi TR. 2014c. Transgenic banana plants expressing a Stellaria media defensin gene (Sm-AMP-D1) demonstrate improved resistance to Fusarium oxysporum. Plant Cell, Tissue and Organ Culture 119:247−55 doi: 10.1007/s11240-014-0529-x |
[74] |
Magambo B, Harjeet K, Arinaitwe G, Tendo S, Arinaitwe IK, et al. 2016. Inhibition of cell death as an approach for development of transgenic resistance against Fusarium wilt disease. African Journal of Biotechnology 15:786−97 doi: 10.5897/AJB2015.15104 |
[75] |
Mohandasa S, Sowmyaa HD, Saxenaa AK, Meenakshia S, Thilaka Rania R. 2013. Transgenic banana cv. Rasthali (AAB, Silk gp) harboring Ace-AMP1 gene imparts enhanced resistance to Fusarium oxysporum f. sp. cubense race 1. Scientia Horticulturae 164:392−99 doi: 10.1016/j.scienta.2013.09.018 |
[76] |
Sunisha C, Sowmya HD, Usharani TR, Umesha M, Gopalkrishna HR, et al. 2020. Deployment of stacked antimicrobial genes in banana for stable tolerance against Fusarium oxysporum f. sp. cubense through genetic transformation. Molecular Biotechnology 62:8−17 doi: 10.1007/s12033-019-00219-w |
[77] |
Pei X, Chen S, Wen R, Ye S, Huang J, et al. 2005. Creation of transgenic bananas expressing human lysozyme gene for Panama wilt resistance. Journal of Integrative Plant Biology 47:971−77 doi: 10.1111/j.1744-7909.2005.00141.x |
[78] |
Yip MK, Lee SW, Su KC, Lin YH, Chen TY, et al. 2011. An easy and efficient protocol in the production of pflp transgenic banana against Fusarium wilt. Plant Biotechnology Reports 5:245−54 doi: 10.1007/s11816-011-0179-y |
[79] |
Mahdavi F, Sariah M, Maziah M. 2012. Expression of Rice Thaumatin-like protein gene in transgenic banana plants enhances resistance to Fusarium wilt. Applied Biochemistry and Biotechnology 166:1008−19 doi: 10.1007/s12010-011-9489-3 |
[80] |
Hu C, Wei Y, Huang Y, Yi G. 2013. An efficient protocol for the production of chit42 transgenic Furenzhi banana (Musa spp. AA group) resistant to Fusarium oxysporum. In Vitro Cellular & Developmental Biology - Plant 49:584−92 doi: 10.1007/s11627-013-9525-9 |
[81] |
Dale J, James A, Paul JY, Khanna H, Smith M, et al. 2017. Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4. Nature Communications 8:1496 doi: 10.1038/s41467-017-01670-6 |
[82] |
Baharum NA, Othman RY, Mohd-Yusuf Y, Tan BC, Zaidi K, et al. 2018. The effect of Pathogenesis-related 10 (Pr-10) gene on the progression of Fusarium wilt in Musa acuminata cv. Berangan. Sains Malaysiana 47:2291−300 doi: 10.17576/jsm-2018-4710-05 |
[83] |
Zhang L, Yuan L, Staehelin C, Li Y, Ruan J, et al. 2019. The LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE 1 protein of banana is required for perception of pathogenic and symbiotic signals. New Phytologist 223:1530−46 doi: 10.1111/nph.15888 |
[84] |
Dou T, Shao X, Hu C, Liu S, Sheng O, et al. 2020. Host-induced gene silencing of Foc TR4 ERG6/11 genes exhibits superior resistance to Fusarium wilt of banana. Plant Biotechnology Journal 18:11−13 doi: 10.1111/pbi.13204 |
[85] |
Li H, Hu C, Xie A, Wu S, Bi F, et al. 2022. Overexpression of MpbHLH transcription factor, an encoding ICE1-like protein, enhances Foc TR4-resistance of Cavendish banana. Scientia Horticulturae 291:110590 doi: 10.1016/j.scienta.2021.110590 |
[86] |
Vishnevetsky J, White TL, Palmateer AJ, Flaishman M, Cohen Y, et al. 2011. Improved tolerance toward fungal diseases in transgenic Cavendish banana (Musa spp: AAA group) cv. Grand Nain. Transgenic Research 20:61−72 doi: 10.1007/s11248-010-9392-7 |
[87] |
Kovács G, Sági L, Jacon G, Arinaitwe G, Busogoro JP, et al. 2013. Expression of a rice chitinase gene in transgenic banana (‘Gros Michel’, AAA genome group) confers resistance to black leaf streak disease. Transgenic Research 22:117−30 doi: 10.1007/s11248-012-9631-1 |
[88] |
Tripathi L, Mwaka H, Tripathi JN, Tushemereirwe WK. 2010. Expression of sweet pepper Hrap gene in banana enhances resistance to Xanthomonas campestris pv. musacearum. Molecular Plant Pathology 11:721−31 doi: 10.1111/j.1364-3703.2010.00639.x |
[89] |
Tripathi L, Tripathi JN, Kiggundu A, Korie S, Shotkoski F, et al. 2014a. Field trial of Xanthomonas wilt disease resistant bananas in East Africa. Nature Biotechnology 32:868−70 doi: 10.1038/nbt.3007 |
[90] |
Namukwaya B, Tripathi L, Tripathi JN, Arinaitwe G, Mukasa SB, et al. 2012. Transgenic banana expressing Pflp gene confers enhanced resistance to Xanthomonas wilt disease. Transgenic Research 4:855−65 doi: 10.1007/s11248-011-9574-y |
[91] |
Muwonge A, Tripathi JN, Kunert K, Tripathi L. 2016. Expressing stacked Hrap and Pflp genes in transgenic banana has no synergistic effect on resistance to Xanthomonas wilt disease. South African Journal of Botany 104:125−33 doi: 10.1016/j.sajb.2015.09.017 |
[92] |
Tripathi JN, Lorenzen J, Bahar O, Ronald P, Tripathi L. 2014b. Transgenic expression of the rice Xa21 pattern-recognition receptor in banana (Musa sp.) confers resistance to Xanthomonas campestris pv. musacearum. Plant Biotechnology Journal 12:663−73 doi: 10.1111/pbi.12170 |
[93] |
Cheah K, Chen Y, Xie WS, Gaskill D, Khalil S, et al. 2009. Transgenic banana plants resistant to banana bunchy top virus infection. V International Symposium on Banana: ISHS-ProMusa Symposium on Global Perspectives on Asian Challenges, Guangzhou, China, 2009. 897:449−57 |
[94] |
Ismail RM, El-Domyati FM, Wagih EE, Sadik AS, Abdelsalam AZE. 2011. Construction of banana bunchy top nanovirus-DNA-3 encoding the coat protein gene and its introducing into banana plants cv. Williams. Journal of Genetic Engineering and Biotechnology 9:35−41 doi: 10.1016/j.jgeb.2011.05.012 |
[95] |
Shekhawat UKS, Ganapathi TR, Hadapad AB. 2012. Transgenic banana plants expressing small interfering RNAs targeted against viral replication initiation gene display high-level resistance to banana bunchy top virus infection. The Journal of General Virology 93:1804−13 doi: 10.1099/vir.0.041871-0 |
[96] |
Shekhawat UKS, Ganapathi TR. 2013. MusaWRKY71 overexpression in banana plants leads to altered abiotic and biotic stress responses. PLoS One 8:e75506 doi: 10.1371/journal.pone.0075506 |
[97] |
Shekhawat UKS, Ganapathi TR. 2014. Transgenic banana plants overexpressing MusabZIP53 display severe growth retardation with enhanced sucrose and polyphenol oxidase activity. Plant Cell, Tissue and Organ Culture 116:387−402 doi: 10.1007/s11240-013-0414-z |
[98] |
Dou T, Hu C, Sun X, Shao X, Wu J, et al. 2016. MpMYBS3 as a crucial transcription factor of cold signaling confers the cold tolerance of banana. Plant Cell, Tissue and Organ Culture 125:93−106 doi: 10.1007/s11240-015-0932-y |
[99] |
Tak H, Negi S, Ganapathi TR. 2017. Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance. Protoplasma 254:803−16 doi: 10.1007/s00709-016-0991-x |
[100] |
Shekhawat UKS, Srinivas L, Ganapathi TR. 2011. MusaDHN-1, a novel multiple stress-inducible SK3-type dehydrin gene, contributes affirmatively to drought-and salt-stress tolerance in banana. Planta 234:915−32 doi: 10.1007/s00425-011-1455-3 |
[101] |
Rustagi A, Jain S, Kumar D, Shekhar S, Jain M, et al. 2015. High efficiency transformation of banana [Musa acuminata L. cv. Matti (AA)] for enhanced tolerance to salt and drought stress through overexpression of a peanut salinity-induced pathogenesis-related class 10 protein. Molecular Biotechnology 57:27−35 doi: 10.1007/s12033-014-9798-1 |
[102] |
Sreedharan S, Shekhawat UKS, Ganapathi TR. 2012. MusaSAP1, a A20/AN1 zinc finger gene from banana functions as a positive regulator in different stress responses. Plant Molecular Biology 80:503−17 doi: 10.1007/s11103-012-9964-4 |
[103] |
Sreedharan S, Shekhawat UKS, Ganapathi TR. 2013. Transgenic banana plants overexpressing a native plasma membrane aquaporin MusaPIP1;2 display high tolerance levels to different abiotic stresses. Plant Biotechnology Journal 11:942−52 doi: 10.1111/pbi.12086 |
[104] |
Sreedharan S, Shekhawat UKS, Ganapathi TR. 2015. Constitutive and stress-inducible overexpression of a native aquaporin gene (MusaPIP2;6) in transgenic banana plants signals its pivotal role in salt tolerance. Plant Molecular Biology 88:41−52 doi: 10.1007/s11103-015-0305-2 |
[105] |
Xu Y, Jin Z, Xu B, Li J, Li Y, et al. 2020a. Identification of transcription factors interacting with a 1274 bp promoter of MaPIP1;1 which confers high-level gene expression and drought stress Inducibility in transgenic Arabidopsis thaliana. BMC Plant Biology 20:278 doi: 10.1186/s12870-020-02472-7 |
[106] |
Xu Y, Liu J, Jia C, Hu W, Song S, et al. 2021. Overexpression of an banana aquaporin gene MaPIP1;1 enhances tolerance to multiple abiotic stresses in transgenic banana and analysis of its interacting transcription factors. Frontiers in Plant Science 12:699230 doi: 10.3389/fpls.2021.699230 |
[107] |
Xu Y, Hu W, Liu J, Song S, Hou X, et al. 2020b. An aquaporin gene MaPIP2-7 is involved in tolerance to drought, cold and salt stresses in transgenic banana (Musa acuminata L.). Plant Physiology and Biochemistry 147:66−76 doi: 10.1016/j.plaphy.2019.12.011 |
[108] |
Xu Y, Li J, Song S, Liu J, Hou X, et al. 2020c. A novel aquaporin gene MaSIP2-1 confers tolerance to drought and cold stresses in transgenic banana. Molecular Breeding 40:62 doi: 10.1007/s11032-020-01143-7 |
[109] |
Shekhar S, Rustagi A, Kumar D, Yusuf MA, Sarin NB, et al. 2019. Groundnut AhcAPX conferred abiotic stress tolerance in transgenic banana through modulation of the ascorbate-glutathione pathway. Physiology and Molecular Biology of Plants 25:1349−66 doi: 10.1007/s12298-019-00704-1 |
[110] |
Kumar GBS, Srinivas L, Ganapathi TR. 2011. Iron fortification of banana by the expression of soybean ferritin. Biological Trace Element Research 142:232−41 doi: 10.1007/s12011-010-8754-6 |
[111] |
Paul JY, Khanna H, Kleidon J, Hoang P, Geijskes J, et al. 2017. Golden bananas in the field: elevated fruit pro-vitamin A from the expression of a single banana transgene. Plant Biotechnology Journal 15:520−32 doi: 10.1111/pbi.12650 |
[112] |
Elitzur T, Yakir E, Quansah L, Fei Z, Vrebalov J, et al. 2016. Banana MaMADS transcription factors are necessary for fruit ripening and molecular tools to promote shelf-life and food security. Plant Physiology 171:380−91 doi: 10.1104/pp.15.01866 |
[113] |
Liu J, Liu M, Wang J, Zhang J, Miao H, et al. 2021. Transcription factor MaMADS36 plays a central role in regulating banana fruit ripening. Journal of Experimental Botany 72:7078−91 doi: 10.1093/jxb/erab341 |
[114] |
Tripathi L, Dhugga KS, Ntui VO, Runo S, Syombua ED, et al. 2022. Genome editing for sustainable agriculture in Africa. Frontiers in Genome Editing 4:876697 doi: 10.3389/fgeed.2022.876697 |
[115] |
Tripathi L, Ntui VO, Tripathi JN. 2020. CRISPR/Cas9-based genome editing of banana for disease resistance. Current Opinion in Plant Biology 56:118−26 doi: 10.1016/j.pbi.2020.05.003 |
[116] |
Tripathi L, Ntui VO, Tripathi JN. 2022. Control of bacterial diseases of banana using CRISPR/Cas-based gene editing. International Journal of Molecular Sciences 23:3619 doi: 10.3390/ijms23073619 |
[117] |
Tripathi L, Ntui VO, Tripathi JN, Kumar PL. 2021. Application of CRISPR/Cas for diagnosis and management of viral diseases of banana. Frontiers in Microbiology 11:609784 doi: 10.3389/fmicb.2020.609784 |
[118] |
Hu C, Deng G, Sun X, Zuo C, Li C, et al. 2017. Establishment of an efficient CRISPR/Cas9-mediated gene editing system in banana. Scientia Agricultura Sinica 50:1294−301 doi: 10.3864/j.issn.0578-1752.2017.07.012 |
[119] |
Kaur N, Alok A, Shivani, Kaur N, Pandey P, et al. 2018. CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome. Functional & Integrative Genomics 18:89−99 doi: 10.1007/s10142-017-0577-5 |
[120] |
Naim F, Dugdale B, Kleidon J, Brinin A, Shand K, et al. 2018. Gene editing the phytoene desaturase alleles of Cavendish banana using CRISPR/Cas9. Transgenic Research 27:451−60 doi: 10.1007/s11248-018-0083-0 |
[121] |
Ntui VO, Tripathi JN, Tripathi L. 2020. Robust CRISPR/Cas9 mediated genome editing tool for banana and plantain (Musa spp.). Current Plant Biology 21:100128 doi: 10.1016/j.cpb.2019.100128 |
[122] |
Zorrilla-Fontanesi Y, Pauwels L, Panis B, Signorelli S, Vanderschuren H, et al. 2020. Strategies to revise agrosystems and breeding to control Fusarium wilt of banana. Nature Food 1:599−604 doi: 10.1038/s43016-020-00155-y |
[123] |
Zhang S, Wu S, Hu C, Yang Q, Dong T, et al. 2022. Increased mutation efficiency of CRISPR/Cas9 genome editing in banana by optimized construct. PeerJ 10:e12664 doi: 10.7717/peerj.12664 |
[124] |
Tripathi JN, Ntui VO, Ron M, Muiruri SK, Britt A, et al. 2019. CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Communications Biology 2:46 doi: 10.1038/s42003-019-0288-7 |
[125] |
Tripathi JN, Ntui VO, Shah T, Tripathi L. 2021. CRISPR/Cas9-mediated editing of DMR6 Orthologue in banana (Musa spp.) confers enhanced resistance to bacterial disease. Plant Biotechnology Journal 19:1291−93 doi: 10.1111/pbi.13614 |
[126] |
Maxmen A. 2019. CRISPR might be the banana’s only hope against a deadly fungus. Nature 574:15 doi: 10.1038/d41586-019-02770-7 |
[127] |
Kaur N, Alok A, Shivani, Kumar P, Kuar N, et al. 2020. CRISPR/Cas9 directed editing of lycopene epsilon-cyclase modulates metabolic flux for β-carotene biosynthesis in banana fruit. Metabolic Engineering 59:76−86 doi: 10.1016/j.ymben.2020.01.008 |
[128] |
Hu C, Sheng O, Deng G, He W, Tong D, et al. 2021. CRISPR/Cas9-mediated genome editing of MaACO1 (aminocyclopropane-1-carboxylate oxidase1) promotes the shelf life of banana fruit. Plant Biotechnology Journal 19:654−56 doi: 10.1111/pbi.13534 |
[129] |
Awasthi P, Khan S, Lakhani H, Chaturvedi S, Shivani, et al. 2022. Transgene-free genome editing supports the role of carotenoid cleavage dioxygenase 4 as a negative regulator of β-carotene in banana. Journal of Experimental Botany. Bot 73:3401−16 doi: 10.1093/jxb/erac042 |
[130] |
Shao X, Wu S, Dou T, Zhu H, Hu C, et al. 2020. Using CRISPR/Cas9 genome editing system to create MaGA20ox2 gene-modified semi-dwarf banana. Plant Biotechnology Journal 18:17−19 doi: 10.1111/pbi.13216 |
[131] |
Cao X, Xie H, Song M, Lu J, Ma P, et al. 2022. Cut-dip-budding delivery system enables genetic modifications in plants without tissue culture. The Innovation 4:100345 doi: 10.1016/j.xinn.2022.100345 |