[1]

Hyde KD, Norphanphoun C, Maharachchikumbura SSN, Bhat DJ, Jones EBG, et al. 2020. Refined families of Sordariomycetes. Mycosphere 11:305−1059

doi: 10.5943/mycosphere/11/1/7
[2]

Wijayawardene NN, Hyde KD, Dai DQ, Sánchez-García M, Goto BT, et al. 2022. Outline of Fungi and fungus-like taxa – 2021. Mycosphere 13:53−453

doi: 10.5943/mycosphere/13/1/2
[3]

Maharachchikumbura SSN, Hyde KD, Jones EBG, McKenzie EHC, Bhat JD, et al. 2016. Families of Sordariomycetes. Fungal Diversity 79:1−317

doi: 10.1007/s13225-016-0369-6
[4]

Samarakoon MC, Hyde KD, Promputtha I, Hongsanan S, Ariyawansa HA, et al. 2016. Evolution of Xylariomycetidae (Ascomycota: Sordariomycetes). Mycosphere 7:1746−1761

doi: 10.5943/mycosphere/7/11/9
[5]

Hongsanan S, Maharachchikumbura SSN, Hyde KD, Samarakoon MC, Jeewon R, et al. 2017. An updated phylogeny of Sordariomycetes based on phylogenetic and molecular clock evidence. Fungal Diversity 84:25−41

doi: 10.1007/s13225-017-0384-2
[6]

Perera RH, Maharachchikumbura SSN, Jones EBG, Bahkali AH, Elgorban AM, et al. 2017. Delonicicola siamense gen. & sp. nov. (Delonicicolaceae fam. nov., Delonicicolales ord. nov.), a saprobic species from Delonix regia seed pods. Cryptogamie Mycologie 38:321−40

doi: 10.7872/crym/v38.iss3.2017.321
[7]

Nitschke T. 1869. Verh. Naturhist. Vereines Preuss. Rheinl 26:73

[8]

Glawe DA, Rogers JD. 1984. Diatrypaceae in the Pacific Northwest. Mycotaxon 20:401−60

[9]

Rappaz F. 1987. Taxonomie et nomenclature des Diatrypaceae à asques octospores. Mycologia Helvetica 2:285−648

[10]

Mehrabi M, Hemmati R, Vasilyeva LN, Trouillas FP. 2015. A new species and a new record of Diatrypaceae from Iran. Mycosphere 6:60−68

doi: 10.5943/mycosphere/6/1/7
[11]

de Almeida DAC, Gusmão LFP, Miller AN. 2016. Taxonomy and molecular phylogeny of Diatrypaceae (Ascomycota, Xylariales) species from the Brazilian semi-arid region including four new species. Mycological Progress 15:1−27

doi: 10.1007/s11557-016-1194-8
[12]

Shang QJ, Hyde KD, Phookamsak R, Doilom M, Bhat BJ, et al. 2017. Diatrypella tectonae and Peroneutypa mackenziei spp, nov. (Diatrypaceae) from northern Thailand. Mycological Progress 16:463−476

doi: 10.1007/s11557-017-1294-0
[13]

Zhu H, Pan M, Wijayawardene NN, Jiang N, Ma R, et al. 2021. The hidden diversity of diatrypaceous fungi in China. Frontiers in Microbiology 12:646262

doi: 10.3389/fmicb.2021.646262
[14]

Berlese AN. 1905. Icones fungorum omnium hucusque cognitorum 3. pp. 80–82

[15]

Acero FJ, González V, Sánchez-Ballesteros J, Rubio V, Checa J, et al. 2004. Molecular phylogenetic studies on the Diatrypaceae based on rDNA-ITS sequences. Mycologia 96:249−259

doi: 10.1080/15572536.2005.11832975
[16]

Carmarán CC, Romero AI, Giussani LM. 2006. An approach towards a new phylogenetic classification in Diatrypaceae. Fungal Diversity 23:67−87

[17]

Senwanna C, Phookamsak R, Doilom M, Hyde KD, Cheewangkoon R. 2017. Novel taxa of Diatrypaceae from Para rubber (Hevea brasiliensis) in northern Thailand introducing a novel genus Allocryptovalsa. Mycosphere 8:1835−55

doi: 10.5943/mycosphere/8/10/9
[18]

Shang QJ, Hyde KD, Jeewon R, Khan S, Promputtha I, et al. 2018. Morpho-molecular characterization of Peroneutypa (Diatrypaceae, Xylariales) with two novel species from Thailand. Phytotaxa 356:1−8

doi: 10.11646/phytotaxa.356.1.1
[19]

Phukhamsakda C, Nilsson RH, Bhunjun CS, Gomes de Farias AR, Sun YR, et al. 2022. The numbers of fungi, contributions from traditional taxonomic studies and challenges of metabarcoding. Fungal Diversity 114:327−86

doi: 10.1007/s13225-022-00502-3
[20]

Samarakoon MC, Hyde KD, Maharachchikumbura SSN, Stadler M, Gareth Jones EB, et al. 2022. Taxonomy phylogeny molecular dating and ancestral state reconstruction of Xylariomycetidae (Sordariomycetes). Fungal Diversity 112:1−88

doi: 10.1007/s13225-021-00495-5
[21]

Saccardo PA. 1905. Sylloge Fungorum XVII. 569 pp

[22]

Vasilyeva LN, Rogers JD. 2010. Some new pyrenomycetous and loculoascomycetous fungi on the endemic Hawaiian plant Hibiscadelphus giffardianus. Mycotaxon 113:273−81

doi: 10.5248/113.273
[23]

Mehrabi M, Hemmati R, Vasilyeva LN, Trouillas FP. 2016. Diatrypella macrospora sp. nov. and new records of diatrypaceous fungi from Iran. Phytotaxa 252:43−55

doi: 10.11646/phytotaxa.252.1.4
[24]

Phookamsak R, Hyde KD, Jeewon R, Bhat DJ, Jones EB, et al. 2019. Fungal diversity notes 929–1035: taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Diversity 95:1−273

doi: 10.1007/s13225-019-00421-w
[25]

Dayarathne MC, Jones EBG, Maharachchikumbura SSN, Devadatha B, Sarma VV, et al. 2020. Morpho-molecular characterization of microfungi associated with marine based habitats. Mycosphere 11:1−188

doi: 10.5943/mycosphere/11/1/1
[26]

Lumbsch HT, Huhndorf SM. 2010. Myconet volume 14. Part One. Outline of Ascomycota–2009. Part two. Notes on Ascomycete systematics. Nos. 4751–5113. Fieldiana Life and Earth Sciences 1:1−64

doi: 10.3158/1557.1
[27]

Maharachchikumbura SSN, Hyde KD, Jones EBG, McKenzie EHC, Huang SK, et al. 2015. Towards a natural classification and backbone tree for Sordariomycetes. Fungal Diversity 72:199−301

doi: 10.1007/s13225-015-0331-z
[28]

Luo Z, Hyde KD, Liu J, Maharachchikumbura SSN, Jeewon R, et al. 2019. Freshwater Sordariomycetes. Fungal Diversity 99:451−660

doi: 10.1007/s13225-019-00438-1
[29]

Index Fungorum. 2022. www.indexfungorum.org/Names/Names.asp (Accessed on October 20, 2022).

[30]

Senanayake IC, Rathnayaka AR, Marasinghe DS, Calabon MS, Gentekaki E, et al. 2020. Morphological approaches in studying fungi: collection, examination, isolation, sporulation and preservation. Mycosphere 11:2678−754

doi: 10.5943/mycosphere/11/1/20
[31]

Jayasiri SC, Hyde KD, Ariyawansa HA, Bhat J, Buyck B, et al. 2015. The Faces of fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Diversity 74:3−18

doi: 10.1007/s13225-015-0351-8
[32]

Du TY, Karunarathna SC, Hyde KD, Mapook A, Wariss HM, et al. 2022. The endophytic fungi of Aquilaria sinensis from southern China. Fungal Biotec 2:1−15

[33]

White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols, A Guide to Methods and Applications, eds. Innis MA, Gelfand DH, Sninsky JJ, White TJ. San Diego, California: Academic Press. pp. 315–22. https://doi.org/10.1016/B978-0-12-372180-8 50042-1

[34]

Trouillas FP, Pitt WM, Sosnowski MR, Huang R, Peduto F, et al. 2011. Taxonomy and DNA phylogeny of Diatrypaceae associated with Vitis vinifera and other woody plants in Australia. Fungal Diversity 49:203−23

doi: 10.1007/s13225-011-0094-0
[35]

Dissanayake AJ, Bhunjun CS, Maharachchikumbura SSN, Liu JK. 2020. Applied aspects of methods to infer phylogenetic relationships amongst fungi. Mycosphere 11:2652−76

doi: 10.5943/mycosphere/11/1/18
[36]

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30:772−80

doi: 10.1093/molbev/mst010
[37]

Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41:95−98

[38]

Glez-Peña D, Gómez-Blanco D, Reboiro-Jato M, Fdez-Riverola F, Posada D. 2010. ALTER, program-oriented conversion of DNA and protein alignments. Nucleic Acids Research 38:W14−W18

doi: 10.1093/nar/gkq321
[39]

Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the gateway computing environments workshop (GCE), New Orleans, LA, USA, 2010. pp. 1–8. New Orleans, USA: IEEE. https://doi.org/10.1109/GCE.2010.5676129

[40]

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312−13

doi: 10.1093/bioinformatics/btu033
[41]

Stamatakis A, Hoover P, Rougemont J. 2008. A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57:758−71

doi: 10.1080/10635150802429642
[42]

Ronquist F, Huelsenbeck J, Teslenko M. 2011. Draft MrBayes version 3.2. Manual, tutorials and model summaries. pp. 1−84

[43]

Rannala B, Yang Z. 1996. Probability distribution of molecular evolutionary trees, a new method of phylogenetic inference. Journal of Molecular Evolution 43:304−11

doi: 10.1007/BF02338839
[44]

Zhaxybayeva O, Gogarten JP. 2002. Bootstrap, Bayesian probability and maximum likelihood mapping, exploring new tools for comparative genome analyses. BMC Genomics 3:4

doi: 10.1186/1471-2164-3-4
[45]

Rambaut A. 2012. FigTree version 1 4, 2, University of Edinburgh Edinburgh.

[46]

Konta S, Maharachchikumbura SSN, Senanayake IC, McKenzie EHC, Stadler M, et al. 2020. A new genus Allodiatrype, five new species and a new host record of diatrypaceous fungi from palms (Arecaceae). Mycosphere 11:239−68

doi: 10.5943/mycosphere/11/1/4
[47]

Luque J, Garcia-Figueres F, Legorburu FJ, Muruamendiaraz A, Armengol J, et al. 2012. Species of Diatrypaceae associated with grapevine trunk diseases in Eastern Spain. Phytopathologia Mediterranea 51:528−40

[48]

Trouillas FP, Hand FP, Inderbitzin P, Gubler WD. 2015. The genus Cryptosphaeria in the Western United States: Taxonomy, multilocus phylogeny and a new species, C. multicontinentalis. Mycologia 107:1304−13

doi: 10.3852/15-115
[49]

Trouillas FP, Úrbez-Torres JR, Gubler WD. 2010. Diversity of diatrypaceous fungi associated with grapevine canker diseases in California. Mycologia 102:319−36

doi: 10.3852/08-185
[50]

Schoch CL, Robbertse B, Robert V, Vu D, Cardinali, G, et al. 2014. Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi. Database 2014:bau061

doi: 10.1093/database/bau061
[51]

Lynch SC, Eskalen A, Zambino PJ, Mayorquin JS, Wang DH. 2013. Identification and pathogenicity of Botryosphaeriaceae species associated with coast live oak (Quercus agrifolia) decline in southern California. Mycologia 105:125−40

doi: 10.3852/12-047
[52]

Grassi E, Belen Pildain M, Levin L, Carmaran C. 2014. Studies in Peroneutypa, the new species Eutypa microasca and investigation of ligninolytic enzyme production. Sydowia 66:99−114

doi: 10.12905/0380sydowia66(1)2014-0099
[53]

Arhipova N, Gaitnieks T, Donis J, Stenlid J, Vasaitis R. 2012. Heart-rot and associated fungi in Alnus glutinosa stands in Latvia. Scandinavian Journal of Forest Research 27:327−36

doi: 10.1080/02827581.2012.670727
[54]

Chacón S, Dörge D, Weisenborn J, Piepenbring M. 2013. A new species and a new record of Diatrypaceae from Panama. Mycologia 105:681−88

doi: 10.3852/12-131
[55]

Dayarathne MC, Phookamsak R, Hyde KD, Manawasinghe IS, To-anun C, et al. 2016. Halodiatrype, a novel diatrypaceous genus from mangroves with H. salinicola and H. avicenniae spp., nov. Mycosphere 7:612−27

doi: 10.5943/mycosphere/7/5/7
[56]

Gaytán-Mascorro A, Chew-Madinaveitia YI, Pérez TH, Robles MAG. 2012. First report of Monosporascus cannonballus on watermelon in Northern Mexico. Plant Disease 96:1068

doi: 10.1094/PDIS-02-12-0180-PDN
[57]

Long S, Liu L, Pi Y, Wu Y, Li Q. 2021. New contributions to diatrypaceae from karst areas in China. MycoKeys 83:1−37

doi: 10.3897/mycokeys.83.68926
[58]

Klaysuban A, Sakayaroj J, Jones EBG. 2014. An additional marine fungal lineage in the Diatrypaceae Xylariales: Pedumispora rhizophorae. Botanica Marina 57:413−20

doi: 10.1515/bot-2014-0017
[59]

Dai DQ, Phookamsak R, Wijayawardene NN, Li WJ, Bhat DJ, et al. 2017. Bambusicolous fungi. Fungal Diversity 82:1−105

doi: 10.1007/s13225-016-0367-8
[60]

Peršoh D, Melcher M, Graf K, Fournier J, Stadler M, et al. 2009. Molecular and morphological evidence for the delimitation of Xylaria hypoxylon. Mycologia 101:256−68

doi: 10.3852/08-108
[61]

Desmazières JBHJ. 1840. Notice sur quelques plantes cryptogames nouvelles découvertes en France, qui vont paraître en nature dans la collection publiée par l’auteur. Annales des Sciences Naturelles Botanique 13:181−90

[62]

Saccas AM. 1981. Étude de la Flore Cryptogamique des Caféirs en Afrique Centrale. Paris: Institut Français du Café et du Cacao (IFCC) 16. pp. 1−522

[63]

Brenckle JF. 1917. North Dakota fungi – I. Mycologia 9:275−93

doi: 10.1080/00275514.1917.12018928
[64]

Cooke MC, George M. 1880. Grevillea. Vol. 9. London: Williams and Norgate. 196 pp

[65]

Rehm H. 1914. Ascomycetes Philippinenses − VI. Leaflets of Philippine Botany 6:2257−81

[66]

Sydow H, Sydow P. 1910. Fungi Paraenses. Hedwigia 49:78−84

[67]

Saccardo PA. 1918. 1. Fungi Singaporenses Bakeriani. 2. Fungi Abellinenses novi. Bolletino dell’Orto Botanico Regia dell'Universita de Napoli 6:39−73

[68]

Mehrabi M, Asgari B, Hemmati R. 2019. Two new species of Eutypella and a new combination in the genus Peroneutypa (Diatrypaceae). Mycological Progress 18:1057−69

doi: 10.1007/s11557-019-01503-4
[69]

Saccas AM. 1954. Les champignons de l’Hévéa en Afrique Équatoriale Française. Journal d'Agriculture Tropicale et de Botanique Appliquée 1:461−81

doi: 10.3406/jatba.1954.2183
[70]

Moreau C, Moreau M. 1951. Pyrénomycètes du Caféier en Cote d'Ivoire. Revue de Mycologie (Paris) 16:66−72

[71]

Rieuf P, Teasca G. 1970. Fungi on avocado pear in Morocco. Al Awamia 34:47−90

[72]

Chevaugeon J. 1956. Les maladies cryptogamiques du manioc en Afrique Occidentale. Encyclopédie Mycologique 28:1−205

[73]

Petch T. 1922. Additions to Ceylon fungi II. Annals of the Royal Botanic Gardens Peradeniya 7:279−322

[74]

Farr DF, Rossman AY. 2022. Fungal Databases. U. S. National Fungus Collections, ARS, USDA. https://nt.ars-grin.gov/fungaldatabases

[75]

Turjaman M, Hidayat A, Santoso E. 2016. Development of agarwood induction technology using endophytic fungi. In Agarwood, Tropical Forestry, ed. Mohamed R. Singapore: Springer. pp. 57–71. https://doi.org/10.1007/978-981-10-0833-7_4

[76]

Du TY, Dao CJ, Mapook A, Stephenson SL, Elgorban AM, et al. 2022. Diversity and biosynthetic activities of agarwood associated fungi. Diversity 14:211

doi: 10.3390/d14030211
[77]

Azren PD, Lee SY, Emang D, Mohamed R. 2019. History and perspectives of induction technology for agarwood production from cultivated Aquilaria in Asia: A review. Journal of Forestry Research 30:1−11

doi: 10.1007/s11676-018-0627-4
[78]

Subasinghe SMCUP, Hitihamu HID, Fernando KMEP. 2019. Use of two fungal species to induce agarwood resin formation in Gyrinops walla. Journal of Forestry Research 30:721−26

doi: 10.1007/s11676-018-0654-1