[1]

Shukla JB, Verma M, Misrab. AK. 2017. Effect of global warming on sea level rise: A modeling study. Ecological Complexity 32:99−110

doi: 10.1016/j.ecocom.2017.10.007
[2]

Church JA, White NJ. 2011. Sea-level rise from the late 19th to the early 21st century. Surveys in Geophysics 32:585−602

doi: 10.1007/s10712-011-9119-1
[3]

Kulp SA, Strauss BH. 2019. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nature Communications 10:4844

doi: 10.1038/s41467-019-12808-z
[4]

Ivushkin K, Bartholomeus H, Bregt AK, Pulatov A, Kempen B, de Sousa L. 2019. Global mapping of soil salinity change. Remote Sensing of Environment 231:111260

doi: 10.1016/j.rse.2019.111260
[5]

Murray NJ, Phinn SR, DeWitt M, Ferrari R, Johnston R, et al. 2019. The global distribution and trajectory of tidal flats. Nature 565:222−25

doi: 10.1038/s41586-018-0805-8
[6]

Barton M. 2015. Climate change, sea level rise and coastal landslides. In Engineering Geology for Society and Territory, eds. Lollino G, Manconi A, Clague J, Shan W, Chiarle M. Vol. 1: XX,572. Switzerland: Springer, Cham. pp. 415−18. https://doi.org/10.1007/978-3-319-09300-0_79

[7]

Abiala MA, Abdelrahman M, Burritt DJ, Tran LSP. 2018. Salt stress tolerance mechanisms and potential applications of legumes for sustainable reclamation of salt-degraded soils. Land Degradation & Development 29:3812−22

doi: 10.1002/ldr.3095
[8]

Ali H, Khan E, Sajad MA. 2013. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 91:869−81

doi: 10.1016/j.chemosphere.2013.01.075
[9]

Greipsson S. 2011. Phytoremediation. Nature Education Knowledge 3:7

[10]

Rani K, Sharma P, Kumar S, Wati L, Kumar R, et al. 2019. Legumes for sustainable soil and crop management. In Sustainable Management of Soil and Environment, eds. Meena R, Kumar S, Bohra J, Jat M. Singapore: Springer. pp. 193–215. https://doi.org/10.1007/978-981-13-8832-3_6

[11]

Stür WW, Horne PM. 2001. Developing forage technologies with smallholder farmers: How to grow, manage and use forages. ACIAR Monograph No. 88. Australia: ACIAR, CIAT

[12]

Hasanuzzaman M, Shabala S, Fujita M. 2019. Halophytes and Climate Change: Adaptive Mechanisms and Potential Uses. CABI, Oxfordshire, UK. 386 pp

[13]

Yoshida J, Tomooka N, Khaing TY, Shantha PGS, Naito H, et al. 2020. Unique responses of three highly salt-tolerant wild Vigna species against salt stress. Plant Production Science 23:114−28

doi: 10.1080/1343943X.2019.1698968
[14]

Ren C, Kong C, Yan K, Xie Z. 2019. Transcriptome analysis reveals the impact of arbuscular mycorrhizal symbiosis on Sesbania cannabina expose to high salinity. Scientific reports 9:2780

doi: 10.1038/s41598-019-39463-0
[15]

Singh T, Ramakrishnan S, umar Mahanta S, Tyagi VC, Kumar Roy A. 2019. Tropical Forage Legumes in India: Status and Scope for Sustaining Livestock Production. In Forage Groups, eds. Ricardo Loiola Edvan RL, Santos EM. London: IntechOpen. https://doi.org/10.5772/intechopen.81186

[16]

Rogers ME, Craig AD, Munns RE, Colmer TD, Nichols PGH, et al. 2005. The potential for developing fodder plants for the salt-affected areas of southern and eastern Australia: an overview. Animal Production Science 45:301−29

doi: 10.1071/EA04020
[17]

Bai C, Liu G, Zhang Y, Yu D, Yan L. 2013. Technical challenges in evaluating southern China’s forage germplasm resources. Tropical Grasslands – Forrajes Tropicales 1:184−91

doi: 10.17138/TGFT(1)184-191
[18]

Hanson J, Maass B. 1999. Conservation of tropical forage genetic resources. XVIII International Grassland Congress, 8−19 June 1997, Winnipeg, Manitoba, and Saskatoon, Saskatchewan, Canada.Vol. 3. pp. 31−36

[19]

Zhao C, Zhang H, Song C, Zhu J, Shabala S. 2020. Mechanisms of plant responses and adaptation to soil salinity. The Innovation 1:100017

doi: 10.1016/j.xinn.2020.100017
[20]

Munns R. 2005. Genes and salt tolerance: bringing them together. New Phytologist 167:645−63

doi: 10.1111/j.1469-8137.2005.01487.x
[21]

Jiang Z, Zhou X, Tao M, Yuan F, Liu L, et al. 2019. Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx. Nature 572:341−46

doi: 10.1038/s41586-019-1449-z
[22]

Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59:651−81

doi: 10.1146/annurev.arplant.59.032607.092911
[23]

Flowers TJ, Colmer TD. 2008. Salinity tolerance in halophytes. New Phytologist 179:945−63

doi: 10.1111/j.1469-8137.2008.02531.x
[24]

Flowers TJ, Galal HK, Bromham L. 2010. Evolution of halophytes: multiple origins of salt tolerance in land plants. Functional Plant Biology 37:604−12

doi: 10.1071/FP09269
[25]

Bruning B, Rozema J. 2013. Symbiotic nitrogen fixation in legumes: perspectives for saline agriculture. Environmental and experimental botany 92:134−43

doi: 10.1016/j.envexpbot.2012.09.001
[26]

Grigore MN, Toma C. 2020. Morphological and Anatomical Adaptations of Halophytes: A Review. In Handbook of Halophytes, ed. Grigore MN. Switzerland: Springer, Cham. pp. 1–143. https://doi.org/10.1007/978-3-030-17854-3_37-1

[27]

Soumare A, Diedhiou AG, Thuita M, Hafidi M, Ouhdouch Y, et al. 2020. Exploiting biological nitrogen fixation: A route towards a sustainable agriculture. Plants 9:1011

doi: 10.3390/plants9081011
[28]

Alemneh AA, Zhou Y, Ryder MH, Denton MD. 2020. Mechanisms in plant growth-promoting rhizobacteria that enhance legume-rhizobial symbioses. Journal of Applied Microbiology 129:1133−56

doi: 10.1111/jam.14754
[29]

de Bruijn FJ. 2015. Biological nitrogen fixation. In Principles of Plant-Microbe Interactions, ed. Lugtenberg B. Heidelberg, Switzerland: Springer International Publishing. pp. 215–24. https://doi.org/10.1007/978-3-319-08575-3_23

[30]

Lindström K, Mousavi SA. 2020. Effectiveness of nitrogen fixation in rhizobia. Microbial Biotechnology 13:1314−35

doi: 10.1111/1751-7915.13517
[31]

Herridge DF, Peoples MB, Boddey RM. 2008. Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil 311:1−18

doi: 10.1007/s11104-008-9668-3
[32]

Bohlool BB, Ladha JK, Garrity DP, George T. 1992. Biological nitrogen fixation for sustainable agriculture: A perspective. Plant and Soil 141:1−11

doi: 10.1007/BF00011307
[33]

Atieno M, Lesueur D. 2019. Opportunities for improved legume inoculants: enhanced stress tolerance of rhizobia and benefits to agroecosystems. Symbiosis 77:191−205

doi: 10.1007/s13199-018-0585-9
[34]

Elboutahiri N, Thami-Alami I, Udupa SM. 2010. Phenotypic and genetic diversity in Sinorhizobium meliloti and S. medicae from drought and salt affected regions of Morocco. BMC Microbiology 10:15

doi: 10.1186/1471-2180-10-15
[35]

Jiang J, Wei W, Du B, Li X, Wang L, et al. 2004. Salt-tolerance genes involved in cation efflux and osmoregulation of Sinorhizobium fredii RT19 detected by isolation and characterization of Tn5 mutants. FEMS Microbiology Letters 239:139−46

doi: 10.1016/j.femsle.2004.08.029
[36]

Karmakar K, Rana A, Rajwar A, Sahgal M, Johri BN. 2015. Legume-Rhizobia Symbiosis Under Stress. In Plant Microbes Symbiosis: Applied Facets, ed. Arora N. New Delhi: Springer India. pp. 241−58. https://doi.org/10.1007/978-81-322-2068-8_12

[37]

Ventorino V, Caputo R, De Pascale S, Fagnano M, Pepe O, et al. 2012. Response to salinity stress of Rhizobium leguminosarum bv. viciae strains in the presence of different legume host plants. Annals of Microbiology 62:811−23

doi: 10.1007/s13213-011-0322-6
[38]

Kajić S, Hulak N, Sikora S. 2016. Environmental stress response and adaptation mechanisms in Rhizobia. Agriculturae Conspectus Scientificus 81:15−19

[39]

Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, et al. 2015. Plant growth promoting rhizobia: Challenges and opportunities. 3 Biotech 5:355−77

doi: 10.1007/s13205-014-0241-x
[40]

Qu L, Huang Y, Zhu C, Zeng H, Shen C, et al. 2016. Rhizobia-inoculation enhances the soybean’s tolerance to salt stress. Plant and Soil 400:209−22

doi: 10.1007/s11104-015-2728-6
[41]

Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K. 2016. New insights on plant salt tolerance mechanisms and their potential use for breeding. Frontiers in Plant Science 7:1787

doi: 10.3389/fpls.2016.01787
[42]

Vriezen JAC, de Bruijn FJ, Nüsslein K. 2007. Responses of Rhizobia to desiccation in relation to osmotic stress, oxygen, and temperature. Applied and Environmental Microbiology 73:3451−59

doi: 10.1128/AEM.02991-06
[43]

Arora NK, Verma M, Mishra J. 2017. Rhizobial Bioformulations: Past, Present and Future. pp. 69-99. phs: Plant Growth Promotion to Bioremediation. Microorganisms for Sustainability, ed. Mehnaz S. Vol 2. Singapore: Springer. pp. 69−99. https://doi.org/10.1007/978-981-10-4862-3_4

[44]

Bernard T, Pocard J-A, Perround B, Le Rudulier D. 1986. Variations in the response of salt-stressed Rhizobium strains to betaines. Archives of Microbiology 143:359−64

doi: 10.1007/BF00412803
[45]

Smith LT, Allaith AA, Smith GM. 1994. Mechanism of osmotically regulated N-acetylglutaminylglutamine amide production in Rhizobium meliloti. Plant and Soil 161:103−8

doi: 10.1007/BF02183090
[46]

Dong R, Zhang J, Huan H, Bai C, Chen Z, et al. 2017. High salt tolerance of a Bradyrhizobium strain and its promotion of the growth of Stylosanthes guianensis. International Journal of Molecular Sciences 18:1625

doi: 10.3390/ijms18081625
[47]

Nguyen TT, Atieno M, Herrmann L, Nakasathien S, Sarobol E, et al. 2020. Does inoculation with native rhizobia enhance nitrogen fixation and yield of cowpea through legume-based intercropping in the northern mountainous areas of Vietnam? Experimental Agriculture 56:825−36

doi: 10.1017/s0014479720000344
[48]

Butsayawarapat P, Juntawong P, Khamsuk O, Somta P. 2019. Comparative Transcriptome Analysis of Waterlogging-Sensitive and Tolerant Zombi Pea (Vigna vexillata) Reveals Energy Conservation and Root Plasticity Controlling Waterlogging Tolerance. Plants 8:264

doi: 10.3390/plants8080264
[49]

Gibberd MR, Colmer TD, Cocks PS. 1999. Root porosity and oxygen movement in waterlogging-tolerant Trifolium tomentosum and -intolerant Trifolium glomeratum. Plant, Cell & Environment 22:1161−68

doi: 10.1046/j.1365-3040.1999.00472.x
[50]

Malik AI, Ailewe TI, Erskine W. 2015. Tolerance of three grain legume species to transient waterlogging. AoB Plants 7:plv040

doi: 10.1093/aobpla/plv040
[51]

Pucciariello C, Boscari A, Tagliani A, Brouquisse R, Perata P. 2019. Exploring Legume-Rhizobia Symbiotic Models for Waterlogging Tolerance. Frontiers in Plant Science 10:578

doi: 10.3389/fpls.2019.00578
[52]

Striker GG, Colmer TD. 2017. Flooding tolerance of forage legumes. Journal of Experimental Botany 68:1851−72

doi: 10.1093/jxb/erw239
[53]

Nichols P, Craig A, Bonython A, Rogers M-J, Ballard R, et al. 2010. Development of Melilotus siculus – A new salt and waterlogging-tolerant annual fodder legume species for Mediterranean-type climates. In Sustainable use of Genetic Diversity in Forage and Turf Breeding, ed. Huyghe C. Dordrecht: Springer. pp. 131–135. https://doi.org/10.1007/978-90-481-8706-5_18

[54]

Teakle NL, Amtmann A, Real D, Colmer TD. 2010. Lotus tenuis tolerates combined salinity and waterlogging: maintaining O2 transport to roots and expression of an NHX1-like gene contribute to regulation of Na+ transport. Physiologia Plantarum 139:358−74

doi: 10.1111/j.1399-3054.2010.01373.x
[55]

Wang W, Chen Q. 2013. Salt-tolerant Plant Resources from Coastal Areas of South China. China: Xiamen university press. 444 pp

[56]

Subbarao GV, Johansen C, Jana MK, Kumar Rao JVDK. 1990. Comparative salinity tolerance of symbiotically dependent and nitrogen-fed pigeonpea (Cajanus cajan) and its wild relative Atylosia platycarpa. Biology and Fertility of Soils 10:11−16

doi: 10.1007/BF00336118
[57]

Cook BG, Pengelly BC, Brown SD, Donnelly JL, Eagles D, et al. 2005. Tropical Forages: an interactive selection tool. Web Tool. CSIRO, DPI&F(Qld), CIAT and ILRI, Brisbane, Australia

[58]

Lin R, Zheng J, Pu L, Wang Z, Mei Q, et al. 2021. Genome-wide identification and expression analysis of aquaporin family in Canavalia rosea and their roles in the adaptation to saline-alkaline soils and drought stress. BMC Plant Biology 21:333

doi: 10.1186/s12870-021-03034-1
[59]

Panwar D, Tak N, Gehlot H. 2014. Nodulated native legumes in an arid environment of Indian Thar Desert. In Recent Trends in Plant Sciences. Delhi, India: I. K. International Publishing House Pvt. Ltd. pp. 284−98

[60]

Yan L, Zhang Y, Wang W. 2019. Physiological Response and Comprehensive Evaluation of Centrosema pubescens to Salt Stress. Seed 38:6−13

doi: 10.16590/j.cnki.1001-4705.2019.10.006
[61]

Jamil N, Zairi MNM, Nasim NAiM, Pa'ee F. 2018. Influences of environmental conditions to phytoconstituents in Clitoria ternatea (butterfly pea flower) – A review. Journal of Science and Technology 10:208−28

doi: 10.30880/jst.2018.10.02.029
[62]

Arun AB, Raviraja NS, Sridhar KR. 2001. Effect of temperature, salinity and burial on seed germination and seedling emergence of five coastal sand dune legumes. International Journal of Ecology and Environmental Sciences 27:23−29

[63]

Alalade JA, Akinlade JA, Akingbade AA, Emiola CB, Adebisi IA. 2019. Proximate composition and phytochemical screenings of Crotalaria retusa leaves and seeds. Open Access Library Journal 6:e5058

doi: 10.4236/oalib.1105058
[64]

Lian Z. 1984. Introduction and Cultivation of Dendrolobium triangulare (Retz.) Schindl. Guangdong Agricultural Sciences 4:25−26

[65]

Campos JKL, Araújo TFdS, Brito TGdS, da Silva APS, da Cunha RX, et al. 2018. Indigofera suffruticosa Mill. (Anil): Plant profile, phytochemistry, and pharmacology review. Advances in Pharmacological Sciences 2018:8168526

doi: 10.1155/2018/8168526
[66]

Al Sherif EA. 2009. Melilotus indicus (L.) All., a salt-tolerant wild leguminous herb with high potential for use as a forage crop in salt-affected soils. Flora - Morphology, Distribution, Functional Ecology of Plants 204:737−46

doi: 10.1016/j.flora.2008.10.004
[67]

Rogers ME, Colmer TD, Frost K, Henry D, Cornwall D, et al. 2008. Diversity in the genus Melilotus for tolerance to salinity and waterlogging. Plant and Soil 304:89−101

doi: 10.1007/s11104-007-9523-y
[68]

Wolf JJ, Beatty SW, Seastedt TR. 2004. Soil characteristics of Rocky Mountain National Park grasslands invaded by Melilotus officinalis and M. alba. Journal of Biogeography 31:415−24

doi: 10.1046/j.0305-0270.2003.00983.x
[69]

Kotula L, Kwa HY, Nichols PGH, Colmer TD. 2019. Tolerance and recovery of the annual pasture legumes Melilotus siculus, Trifolium michelianum and Medicago polymorpha to soil salinity, soil waterlogging and the combination of these stresses. Plant and Soil 444:267−80

doi: 10.1007/s11104-019-04254-z
[70]

Marriboina S, Sharma K, Sengupta D, Yadavalli AD, Sharma RP, et al. 2021. Evaluation of high salinity tolerance in Pongamia pinnata (L.) Pierre by a systematic analysis of hormone-metabolic network. Physiologia Plantarum 173:1514−34

doi: 10.1111/ppl.13486
[71]

Ren C, Kong C, Yan K, Zhang H, Luo Y, et al. 2017. Elucidation of the molecular responses to waterlogging in Sesbania cannabina roots by transcriptome profiling. Scientific Reports 7:9256

doi: 10.1038/s41598-017-07740-5
[72]

Zhao K, Fan H, Ungar IA. 2002. Survey of halophyte species in China. Plant Science 163:491−98

doi: 10.1016/S0168-9452(02)00160-7
[73]

Liu Y, Kong D, Yang H, Douxchamps S, Atieno M, et al. 2022. A transcriptomic analysis of Stylo [Stylosanthes guianensis (Aubl.) Sw.] provides novel insights into the basis of salinity tolerance. Frontiers in Sustainable Food Systems 6:725656

doi: 10.3389/fsufs.2022.725656
[74]

Chen Z, Song J, Li X, Arango J, Cardoso JA, et al. 2021. Physiological responses and transcriptomic changes reveal the mechanisms underlying adaptation of Stylosanthes guianensis to phosphorus deficiency. BMC Plant Biol 21:466

doi: 10.1186/s12870-021-03249-2
[75]

Li J. 2012. Study on the introducion, cultivation and salt tolerance of Swainsona formasa. Master Thesis. Beijing Forestry University, Beijing

[76]

Prithivi M, Venkatesan K, Manimaran DR, Gautam RK, Singh PK, et al. 2021. Molecular characterization of Vigna marina (Burm.f.) Merr. from the Andaman and Nicobar Islands for salt tolerance using SSR markers. Plant Genetic Resources: Characterization and Utilization 19:428−36

doi: 10.1017/s1479262121000514
[77]

Ladha J, Watanabe I, Saono S. 1988. Nitrogen fixation by leguminous green manure and practices for its enhancement in tropical lowland rice. In Sustainable agriculture: Green manure in rice farming. Los Baños: International Rice Research Institute. pp. 165−83

[78]

Nworgu F, Egbunike G. 2013. Nutritional potential of Centrosema pubescens Mimosa invisa and Pueraria phaseoloides leaf meals on growth performance responses of broiler chickens. American Journal of Experimental Agriculture 3:506

doi: 10.9734/ajea/2013/2947
[79]

Arudchandran A, Sathasivam K, Theivendirarajah K. 1989. The nature and pattern of nodulation and dry matter production of Crotolaria juncea (Sunn hemp) and Tephrosia purpurea. Tropical Agricultural Research 1:75−83

[80]

Rajaram N, Janardhanan K. 1992. The chemical composition and nutritional potential of the tribal pulse, Abrus precatorius L. Plant Foods for Human Nutrition 42:285−90

doi: 10.1007/BF02194088
[81]

Gouws AJ, Shackleton CM. 2019. Abundance and correlates of the Acacia dealbata invasion in the northern Eastern Cape, South Africa. Forest Ecology and Management 432:455−66

doi: 10.1016/j.foreco.2018.09.048
[82]

May BM, Attiwill PM. 2003. Nitrogen-fixation by Acacia dealbata and changes in soil properties 5 years after mechanical disturbance or slash-burning following timber harvest. Forest Ecology and Management 181:339−55

doi: 10.1016/S0378-1127(03)00006-9
[83]

Raizada A, Rao MSRM, Nambiar KTN, Padmaiah M. 2007. Biomass production and prediction models for Acacia nilotica in salt affected vertisols in Karnataka. The Indian Forester 133:239−46

[84]

Bargali K. 2009. Acacia nilotica: a multipurpose leguminous plant. Nature and Science 7:11−9

[85]

Rai P, Yadav RS, Solanki KR, Rao GR, Singh R. 2001. Growth and pruned production of multipurpose tree species in silvo-pastoral systems on degraded lands in semi-arid region of Uttar Pradesh, India. Forests, Trees and Livelihoods 11:347−64

doi: 10.1080/14728028.2001.9752400
[86]

Tenakwa EA, Imoro AZ, Ansah T, Kizito F. 2022. Pigeon pea (Cajanus cajan) fodder cutting management in the Guinea Savanna Agro-Ecological Zone of Ghana. Agroforestry Systems 96:1−10

doi: 10.1007/s10457-021-00679-7
[87]

de Souza LA, de Andrade SAL, de Souza SCR, Schiavinato MA. 2012. Arbuscular mycorrhiza confers Pb tolerance in Calopogonium mucunoides. Acta Physiologiae Plantarum 34:523−31

doi: 10.1007/s11738-011-0849-y
[88]

Chen WM, Lee TM, Lan CC, Cheng CP. 2000. Characterization of halotolerant rhizobia isolated from root nodules of Canavalia rosea from seaside areas. FEMS Microbiology Ecology 34:9−16

doi: 10.1111/j.1574-6941.2000.tb00749.x
[89]

Sridhar KR, Niveditha VR. 2014. Nutritional and bioactive potential of coastal sand dune wild legume Canavalia maritima(Aubl.) Thou. - An overview. Indian Journal of Natural Products and Resources 6:107−20

[90]

Gomez SM, Kalamani A. 2003. Butterfly pea (Clitoria ternatea): A nutritive multipurpose forage legume for the tropics – An overview. Pakistan Journal of Nutrition 2:374−9

doi: 10.3923/pjn.2003.374.379
[91]

Lopez Sanchez RC, Samson R, Vandamme P, Eichler-Löbermann B, Gomez Padilla E. 2011. Response of Rhizobium** Clitoria ternatea** combinations under salt stress in the Cauto Valley in Cuba. Revista mexicana de ciencias pecuarias. -Mérida, 2010, currens 2: 199−207

[92]

Zhou H, Li M, Zi X, Xu T, Hou G. 2011. Nutritive value of several tropical legume shrubs in Hainan province of China. Journal of Animal and Veterinary Advances 10:1640−84

doi: 10.3923/javaa.2011.1640.1648
[93]

Radhakrishnan L, Murugan M, Sivakumar T. 2007. Biomass yield, chemical composition and nutritive value of Desmanthus virgatus (hedge lucerne) for sheep. Animal Nutrition and Feed Technology 7:119−23

[94]

Vera RR, Pizarro EA, Martins M, Viana JAC, Li J. 1981. Yield and quality of tropical leguminous forages in dry season: Galactia. Proceeding of the 14th International Grassland Conference "strengthening the world forage livestock system", Lexington, Kentucky, USA, 1981. USA: CRC Press. pp. 222−24

[95]

Nath K, Malik N, Singh ON. 1971. Chemical composition and nutritive value of Indigofera enneaphylla and I. Cordifolia as sheep feeds. Australian Journal of Experimental Agriculture 11:178−85

doi: 10.1071/EA9710178
[96]

Liu Z, Luo Y, Liu G, Huan S, Wang H, et al. 2009. Contents and quality evaluation of nutrition elements in 11 germplasms of lndigofera Linnaeus tropical green manure. Chinese Agricultural Science Bulletin 25:283−86

[97]

Brewbaker JL, Plucknett DL, Gonzalez V. 1972. Varietal variation and yield trials of Leucaena leucocephala (Koa Haole) in Hawaii. Hawaii Agricultural Experi Ment Station University Of Hawaii Research Bulletin 166:1−29

[98]

Casanova-Lugo F, Petit-Aldana J, Solorio-Sánchez FJ, Parsons D, Ramírez-Avilés L. 2014. Forage yield and quality of Leucaena leucocephala and Guazuma ulmifolia in mixed and pure fodder banks systems in Yucatan, Mexico. Agroforestry Systems 88:29−39

doi: 10.1007/s10457-013-9652-7
[99]

Dwivedi GK, Kanodia K, Sinha NC. 1991. Significance of intercropped range legumes in nitrogen economy, biomass potential and protein enrichment of Chrysopogon fulvus. Tropical Agriculture 68:255−58

[100]

Kumar U, Siddeshwara N, Vidyasagar, Giridhar KS, Prasad RG. 2020. Biomass yield and chemical composition of Macroptillium autro purpureum and Stylosanthes hamata. Journal of Entomology and Zoology Studies 8:2001−3

[101]

Rusdy M. 2016. Enhancement of seed germination and seedling growth of Siratro (Macroptilium atropurpureum). International Journal of Science and Research 5:820−23

[102]

Baba Arbi S, Chekireb D, Quatrini P, Catania V, Cheriet D, et al. 2015. Phenotypic and genotypic characterization of root nodules rhizobia of Medicago littoralis Rhode and Melilotus indicus (L.) All. growing in the Oasis of Touggourt, Oued Righ Valley, in the Algerian Sahara. Symbiosis 66:75−87

doi: 10.1007/s13199-015-0336-0
[103]

Kuang X, Cao Y, Luo G, Huang Y. 2019. Responses of Melilotus officinalis growth to the composition of different topsoil substitute materials in the reclamation of open-pit mining grassland area in Inner Mongolia. Materials (Basel, Switzerland) 12:3888

doi: 10.3390/ma12233888
[104]

Bennani ML, Ayadi M, Aarab A, Brigui J. 2021. Nutritive value of Melilotus officinalis ecotypes from the North-western Moroccan. Options Méditerranénnes 125:579−82

[105]

Yan J, Li Y, Yan H, Chen W, Zhang X, et al. 2017. Agrobacterium salinitolerans sp. nov., a saline-alkaline-tolerant bacterium isolated from root nodule of Sesbania cannabina. International journal of systematic and evolutionary microbiology 67:1906−11

doi: 10.1099/ijsem.0.001885
[106]

Rao DLN, Gill HS. 1995. Biomass and biofertilizer production by Sesbania cannabina in alkaline soil. Bioresource Technology 53:169−72

doi: 10.1016/0960-8524(95)00080-X
[107]

Ndoye I, Dreyfus B, Becker M. 1996. Sesbania rostrata as green manure for lowland rice in Casamance (Senegal). Tropical Agriculture. 73:234−37

[108]

Ndoye I, Dreyfus B. 1988. N2 fixation by Sesbania rostrata and Sesbania sesban estimated using 15N and total N difference methods. Soil Biology and Biochemistry 20:209−13

doi: 10.1016/0038-0717(88)90038-7
[109]

Nyalemegbe K, Asuming-Brempong S, Danso S. 2012. Evaluation of Sesbania sesban L. (Merr) and Mimosa invisa L. (Fabaceae) as sources of nitrogen in irrigated rice on the Vertisols of the Accra Plains of Ghana. Journal of Ecology & the Natural Environment 4:88−93

[110]

Zemek O, Frossard E, Scopel E, Oberson A. 2018. The contribution of Stylosanthes guianensis to the nitrogen cycle in a low input legume-rice rotation under conservation agriculture. Plant and Soil 425:553−76

doi: 10.1007/s11104-018-3602-0
[111]

Tripathi P, Dutta T, Tripathi M, Chaudhary UB, Kumar R. 2014. Preparation of complete feed pellet from monsoon herbages (Dactylotennium aegypticum, cenchrus ciliaris and Tephrosia purpurea) and its utilization in kids. Indian Journal of Small Ruminants 20:31−36

[112]

Viswanathan MB, Thangadurai D, Vendan KT, Ramesh N. 1999. Chemical analysis and nutritional assessment of Teramnus labialis (L.) Spreng. (Fabaceae). Plant Foods for Human Nutrition 54:345−52

doi: 10.1023/A:1008101805505
[113]

Tang M, Menéndez J, Cantillo MJ, Gazó M. 1988. Response of three tropical leguminous plants to inoculation of iron red soil. Pastos y Forrajes 11

[114]

Murillo JM, Cabrera F, López R. 1997. Response of clover Trifolium fragiferum L. cv. 'salina' to a heavy urban compost application. Compost Science & Utilization 5:15−25

doi: 10.1080/1065657X.1997.10701893
[115]

Norman HC, Humphries AW, Hulm E, Young P, Hughes SJ, et al. 2021. Productivity and nutritional value of 20 species of perennial legumes in a low-rainfall Mediterranean-type environment in southern Australia. Grass and Forage Science 76:134−58

doi: 10.1111/gfs.12527
[116]

Chankaew S, Isemura T, Naito K, Ogiso-Tanaka E, Tomooka N, et al. 2014. QTL mapping for salt tolerance and domestication-related traits in Vigna marina subsp. Theoretical and Applied Genetics 127:691−702

doi: 10.1007/s00122-013-2251-1
[117]

Reckling M, Bergkvist G, Watson C, Stoddard F, Zander P, et al. 2016. Trade-offs between economic and environmental impacts of introducing legumes into cropping systems. Frontiers in Plant Science 7:669

doi: 10.3389/fpls.2016.00669
[118]

Adedapo AA, Omoloye OA, Ohore OG. 2007. Studies on the toxicity of an aqueous extract of the leaves of Abrus precatorius in rats. Onderstepoort Journal of Veterinary Research 74:31−36

doi: 10.4102/ojvr.v74i1.137
[119]

Ngorima A, Shackleton CM. 2019. Livelihood benefits and costs from an invasive alien tree (Acacia dealbata) to rural communities in the Eastern Cape, South Africa. Journal of Environmental Management 229:158−65

doi: 10.1016/j.jenvman.2018.05.077
[120]

Pal D, Mishra P, Sachan N, Ghosh AK. 2011. Biological activities and medicinal properties of Cajanus cajan (L.) Millsp. Journal of Advanced Pharmaceutical Technology & Research 2:207−14

doi: 10.4103/2231-4040.90874
[121]

Morales F, Castaño M, Arroyave J, Ospina MD, Calvert L. 1995. A sobemovirus hindering the utilization of Calopogonium mucunoides as a forage legume in the lowland tropics. Plant disease 79:1220−24

doi: 10.1094/PD-79-1220
[122]

Saidaiah P, Pandravada SR, Sivaraj N, Geetha A, Lingaiah N. 2021. Understanding of yield stability in jack bean (Canavalia ensiformis L.) genotypes using AMMI and GGE bi-plot models. Legume Research 1:8

doi: 10.18805/LR-4548
[123]

Abreu MLC, Vieira RAM, Rocha NS, Araujo RP, Júnior AG. 2014. Clitoria ternatea L. as a potential high quality forage legume. Asian-Australasian Journal of Animal Sciences 27:169−78

[124]

Sonje SB, Bhuktar A. 2013. Anatomical studies of Crotalaria albida Heyne Ex. Roth. Science Research Reporter 3:155−58

[125]

Li Y, Wu D, Jiang G, Zhao B. 2018. Determination of quercetin and kaempferol in Crotalaria ferruginea by QAMS. Fujian Journal of Agricultural Sciences 33:538−42

doi: 10.19303/j.issn.1008-0384.2018.05.018
[126]

Khare CP. 2007. Indigofera enneaphylla Linn. In Indian Medicinal Plants: An Illustrated Dictionary, ed. CP Khare. New York, NY: Springer New York

[127]

Delobel A. 2010. Seed beetles associated with Desmodieae in Vietnam (Coleoptera: Chrysomelidae: Bruchinae). Genus 21:513−33

[128]

Oladeji OS, Adelowo FE, Oluyori AP. 2021. The genus Senna (Fabaceae): A review on its traditional uses, botany, phytochemistry, pharmacology and toxicology. South African Journal of Botany 138:1−32

[129]

Singh AK, Velmurugan A, Singh NP, Roy SD, Biswas U, et al. 2020. ISSR based diversity analysis in beachpea [Vigna marina (Burm.) Merr.] accessions of Andaman and Nicobar Islands, India. Legume Research 43:38−42

doi: 10.18805/LR-3943
[130]

Chebil A, Nasr H, Zaibet L. 2009. Factors affecting farmers' willingness to adopt salt-tolerant forage crops in south-eastern Tunisia. African Journal of Agricultural and Resource Economics 3:19−27

[131]

El Shaer HM. 2010. Halophytes and salt-tolerant plants as potential forage for ruminants in the Near East region. Small Ruminant Research 91:3−12

doi: 10.1016/j.smallrumres.2010.01.010
[132]

Muoni T. 2019. Integrating legumes in mixed crop-livestock systems in east Africa: Farmers' perceptions, ecosystem services and support for decision making. Doctoral thesis. Sveriges lantbruksuniv., Acta Universitatis, Uppsala