[1]

Scheuermann JC, Boyer LA. 2013. Getting to the heart of the matter: long non-coding RNAs in cardiac development and disease. The EMBO Journal l.32:1805−16

doi: 10.1038/emboj.2013.134
[2]

Ransohoff JD, Wei Y, Khavari PA. 2017. The functions and unique features of long intergenic non-coding RNA. Nature Reviews Molecular Cell Biology 19:143−57

doi: 10.1038/nrm.2017.104
[3]

Wilusz JE, Sunwoo H, Spector DL. 2009. Long noncoding RNAs: functional surprises from the RNA world. Genes & Development 23:1494−504

doi: 10.1101/gad.1800909
[4]

Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, et al. 2012. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Research 22:1775−89

doi: 10.1101/gr.132159.111
[5]

Heo JB, Sung S. 2011. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331:76−79

doi: 10.1126/science.1197349
[6]

Csorba T, Questa JI, Sun Q, Dean C. 2014. Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization. PNAS 111:16160−65

doi: 10.1073/pnas.1419030111
[7]

Wang Y, Fan X, Lin F, He G, Terzaghi W, et al. 2014. Arabidopsis noncoding RNA mediates control of photomorphogenesis by red light. PNAS 111:10359−64

doi: 10.1073/pnas.1409457111
[8]

Ding J, Lu Q, Ouyang Y, Mao H, Zhang P, et al. 2012. A long noncoding RNA regulates photoperiod- sensitive male sterility, an essential component of hybrid rice. PNAS 109:2654−59

doi: 10.1073/pnas.1121374109
[9]

Zhou QZ, Zhang B, Yu QY, Zhang Z. 2016. BmncRNAdb: a comprehensive database of non-coding RNAs in the silkworm, Bombyx mori. BMC Bioinformatics 17:370

doi: 10.1186/s12859-016-1251-y
[10]

Khemka N, Singh VK, Garg R, Jain M. 2016. Genome-wide analysis of long intergenic non-coding RNAs in chickpea and their potential role in flower development. Scientific Reports 6:33297

doi: 10.1038/srep33297
[11]

Song, H. et al. 2017. Selective Ablation of Tumor Suppressors in Parafollicular C Cells Elicits Medullary Thyroid Carcinoma. Journal of Biological Chemistry 292:3888−99

doi: 10.1074/jbc.M116.765727
[12]

Kang C, Liu Z. 2015. Global identification and analysis of long non-coding RNAs in diploid strawberry Fragaria vesca during flower and fruit development. BMC Genomics 16:815

doi: 10.1186/s12864-015-2014-2
[13]

Cui J, Luan Y, Jiang N, Bao H, Meng J. 2017. Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16397 conferring resistance to Phytophthora infestans by co-expressing glutaredoxin. The Plant Journal 89:577−89

doi: 10.1111/tpj.13408
[14]

Jiang N, Cui J, Hou X, Yang G, Xiao Y, et al. 2020. Sl-lncRNA15492 interacts with Sl-miR482a and affects Solanum lycopersicum immunity against Phytophthora infestans. The Plant Journal 103:1561−74

doi: 10.1111/tpj.14847
[15]

Bhatia G, Upadhyay SK, Singh K. 2020. Vitis vinifera (Grapevine) lncRNAs are potential regulators of response to necrotrophic fungus, Botrytis cinerea infection. Physiological and Molecular Plant Pathology 112:101553

doi: 10.1016/j.pmpp.2020.101553
[16]

Dadakova K, Havelkov M, Kurkova B, Tlolkova I, Kasparovsky T, et al. 2015. Proteome and transcript analysis of Vitis vinifera cell cultures subjected to Botrytis cinerea infection. Journal of Proteomics 119:143−53

doi: 10.1016/j.jprot.2015.02.001
[17]

Seo JS, Sun H, Park BS, Huang CH, Yeh SD, et al. 2017. ELF18-INDUCED LONG NONCODING RNA associates with Mediator to enhance expression of innate immune response genes in Arabidopsis. The Plant Cell 29:1024−38

doi: 10.1105/tpc.16.00886
[18]

Zhu QH, Stephen S, Taylor J, Helliwell CA, Wang MB. 2014. Long noncoding RNAs responsive to Fusarium oxysporum infection in Arabidopsis thaliana. New Phytologist 201:574−84

doi: 10.1111/nph.12537
[19]

Zhang L, Wang M, Li N, Wang H, Qiu P, et al. 2018. Long noncoding RNAs involve in resistance to Verticillium dahliae, a fungal disease in cotton. Plant Biotechnology Journal 16:1172−85

doi: 10.1111/pbi.12861
[20]

Fan G, Cao Y, Wang Z. 2018. Regulation of long noncoding RNAs responsive to phytoplasma infection in Paulownia tomentosa. International Journal of Genomics 2018:3174352

doi: 10.1155/2018/3174352
[21]

Liu L, Liu C, Wang H, Guan T, Yu S, Li B. 2017. Resistance of different grape cultivars to downy mildew. Plant Protection 43:177−82

doi: 10.3969/j.issn.0529-1542.2017.02.031
[22]

Marutyan SA. 1980. Metabolic changes of new and elite forms of grapevine during infection by mildew. Review of Pathology 59:457

[23]

Sriniasam N, Jeyarajam R. 1980. Grape downy mildew in India, II. Effect of infection on phenolics, Sap concentration, organic acids and amjno acids. Review of plant Pathology 59:572

[24]

Rudyshin SD. 1987. Peroxidase in the leaces in relation to study of readily soluable proteins and resistance in grapevine leaves in relation to resistance to downy mildow. Plant Breeeding Abstacts 57:336

[25]

Wu J, Zhang Y, Zhang H, Huang H, Folta KM, et al. 2010. Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using solexa sequencing technology. BMC Plant Biology 10:234

doi: 10.1186/1471-2229-10-234
[26]

Kortekamp, A. 2006. Expression analysis of defence-related genes in grapevine leaves after inoculation with a host and a non-host pathogen. Plant Physiology & Biochemistry 44:58−67

doi: 10.1016/j.plaphy.2006.01.008
[27]

Le Henanff G, Heitz T, Mestre P, Mutterer J, Walter B, et al. 2009. Characterization of Vitis vinifera NPR1 homologs involved in the regulation of Pathogenesis-Related gene expression. BMC Plant Biology 9:54

doi: 10.1186/1471-2229-9-54
[28]

Merdinoglu D, Wiedeman-Merdinoglu S, Coste P, Dumas V, Haetty S, et al. 2003. Genetic analysis of downy mildew resistance derived from Muscadinia rotundifolia. Acta Horticulturae 603:451−56

doi: 10.17660/actahortic.2003.603.57
[29]

Li T, Cheng X, Wang Y, Yin X, Li Z, et al. 2019. Genome-wide analysis of glyoxalase-like gene families in grape (Vitis vinifera L.) and their expression profiling in response to downy mildew infection. BMC Genomics 20:362

doi: 10.1186/s12864-019-5733-y
[30]

Liu R, Weng K, Dou M, Chen T, Yin X, et al. 2019. Transcriptomic analysis of Chinese wild Vitis pseudoreticulata in response to Plasmopara viticola. Protoplasma 256:1409−24

doi: 10.1007/s00709-019-01387-x
[31]

Ma H, Xiang G, Li Z, Wang Y, Dou M, et al. 2018. Grapevine VpPR10.1 functions in resistance to Plasmopara viticola through triggering a cell death-like defence response by interacting with VpVDAC3. Plant Biotechnol Journal 16:1488−501

doi: 10.1111/pbi.12891
[32]

Li M, Jiao Y, Wang Y, Zhang N, Wang B, et al. 2020. CRISPR/Cas9-mediated VvPR4b editing decreases downy mildew resistance in grapevine (Vitis vinifera L.). Horticulture Research 7:149

doi: 10.1038/s41438-020-00371-4
[33]

Liu L, Liu C, Wang H, Yu S, Guan T, et al. 2020. The abscisic acid receptor gene VvPYL4 positively regulates grapevine resistance to Plasmopara viticola. Plant Cell Tissue and Organ Culture (PCTOC) 142:483−92

doi: 10.1007/s11240-020-01872-9
[34]

Jones JDG, Dangl JL. 2006. The plant immune system. Nature 444:323−29

doi: 10.1038/nature05286
[35]

Yin L, An Y, Qu J, Li X, Zhang Y, et al. 2017. Genome sequence of Plasmopara viticola and insight into the pathogenic mechanism. Scientific Reports 7:46553

doi: 10.1038/srep46553
[36]

Hein I, Gilroy EM, Armstrong MR, Birch PR. 2009. The zig-zag-zig in oomycete – plant interactions. Molecular Plant Pathology 10:547−62

doi: 10.1111/j.1364-3703.2009.00547.x
[37]

Qiao Y, Liu L, Xiong Q, Flores C, Wong J, et al. 2013. Oomycete pathogens encode RNA silencing suppressors. Nature Genetics 45:330−33

doi: 10.1038/ng.2525
[38]

Kong L, Zhang Y, Ye Z, Liu X, Zhao S, et al. 2007. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Research 35:W345−W349

doi: 10.1093/nar/gkm391
[39]

Weikard R, Hadlich F, Kuehn C. 2013. Identification of novel transcripts and noncoding RNAs in bovine skin by deep next generation sequencing. BMC Genomics 14:789

doi: 10.1186/1471-2164-14-789
[40]

Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, et al. 2009. Circos: an information aesthetic for comparative genomics. Genome Research 19:1639−45

doi: 10.1101/gr.092759.109
[41]

Li J, Ma W, Zeng P, Wang J, Geng B, et al. 2015. LncTar: a tool for predicting the RNA targets of long noncoding RNAs. Briefings in Bioinformatics 16:806−12

doi: 10.1093/bib/bbu048
[42]

Li G, Hao Z, Fan C, Wu X. 2017. Genome-Wide Function Analysis of lincRNAs as miRNA Targets or Decoys in Plant. In Plant Epigenetics. RNA Technologies, eds. Rajewsky N, Jurga S, Barciszewski J. Netherland: Springer, Cham. pp. 149–62. https://doi.org/10.1007/978-3-319-55520-1_8

[43]

Wu H, Wang Z, Wang M, Wang X. 2013. Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants. Plant Physiology 161:1875−84

doi: 10.1104/pp.113.215962
[44]

Ivashuta S, Banks IR, Wiggins BE, Zhang Y, Ziegler TE, et al. 2011. Regulation of gene expression in plants through miRNA inactivation. PLoS One 6:e21330

doi: 10.1371/journal.pone.0021330
[45]

Rubio-Somoza I, Weigel D, Franco-Zorilla JM, García JA, Paz-Ares J. 2011. ceRNAs: miRNA target mimic mimics. Cell 147:1431−32

doi: 10.1016/j.cell.2011.12.003
[46]

Rumbolz J, Wirtz S, Kassemeyer HH, Guggenheim R, Schäfer E, et al. 2002. Sporulation of Plasmopara viticola: Differentiation and light regulation. Plant Biology 4:413−422

doi: 10.1055/s-2002-32342
[47]

Staudt G, Kassemeyer H. 1995. Evaluation of downy mildew (Plasmopara viticola) resistance in various accessions of wild Vitis species. Vitis 34:225−28

[48]

Boerner S, McGinnis KM. 2012. Computational identification and functional predictions of long noncoding RNA in Zea mays. PLoS One 7:e43047

doi: 10.1371/journal.pone.0043047
[49]

Liu J, Jung C, Xu J, Wang H, Deng S, et al. 2012. Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. The Plant Cell 24:4333−45

doi: 10.1105/tpc.112.102855
[50]

Li L, Eichten SR, Shimizu R, Petsch K, Yeh CT, et al. 2014. Genome-wide discovery and characterization of maize long non-coding RNAs. Genome Biology 15:R40

doi: 10.1186/gb-2014-15-2-r40
[51]

Shuai P, Liang D, Tang S, Zhang Z, Ye C, et al. 2014. Genome-wide identification and functional prediction of novel and drought-responsive lincRNAs in Populus trichocarpa. Journal of Experimental Botany 65:4975−83

doi: 10.1093/jxb/eru256
[52]

Wang H, Chung PJ, Liu J, Jang IC, Kean MJ, et al. 2014. Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in Arabidopsis. Genome Research 24:444−53

doi: 10.1101/gr.165555.113
[53]

Zhu B, Yang Y, Li R, Fu D, Wen L, et al. 2015. RNA sequencing and functional analysis implicate the regulatory role of long non-coding RNAs in tomato fruit ripening. Journal of Experimental Botany 66:4483−95

doi: 10.1093/jxb/erv203
[54]

Pauli A, Valen E, Lin MF, Garber M, Vastenhouw NL, et al. 2012. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Research 22:577−91

doi: 10.1101/gr.133009.111
[55]

Gil N, Ulitsky I. 2020. Regulation of gene expression by cis-acting long non-coding RNAs. Nature Reviews Genetics 21:102−17

doi: 10.1038/s41576-019-0184-5
[56]

Xiang G, Fu Q, Li G, Liu R, Liu G, et al. 2022. The cytosolic iron-sulphur cluster assembly mechanism in grapevine is one target of a virulent Crinkler effector from Plasmopara viticola. Molecular Plant Pathology 23:1792−806

doi: 10.1111/mpp.13266
[57]

Yoon JH, Abdelmohsen K, Gorospe M. 2014. Functional interactions among microRNAs and long noncoding RNAs. Seminars in Cell & Developmental Biology 34:9−14

doi: 10.1016/j.semcdb.2014.05.015
[58]

Hao Z, Fan C, Cheng T, Su Y, Wei Q, et al. 2015. Genome-wide identification, characterization and evolutionary analysis of long intergenic noncoding RNAs in cucumber. PLoS One 10:e0121800

doi: 10.1371/journal.pone.0121800
[59]

Xin M, Wang Y, Yao Y, Song N, Hu Z, et al. 2011. Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biology 11:61

doi: 10.1186/1471-2229-11-61
[60]

Kornienko AE, Guenzl PM, Barlow DP, Pauler FM. 2013. Gene regulation by the act of long non-coding RNA transcription. BMC Biology 11:59

doi: 10.1186/1741-7007-11-59
[61]

Luo S, Lu JY, Liu L, Yin Y, Chen C, et al. 2016. Divergent lncRNAs regulate gene expression and lineage differentiation in Pluripotent Cells. Cell Stem Cell 18:637−52

doi: 10.1016/j.stem.2016.01.024
[62]

Mohnike L, Rekhter D, Huang W, Feussner K, Tian H, et al. 2021. The glycosyltransferase UGT76B1 modulates N-hydroxy-pipecolic acid homeostasis and plant immunity. The Plant Cell 33:735−49

doi: 10.1093/plcell/koaa045
[63]

Defraia CT, Wang Y, Yao J, Mou Z. 2013. Elongator subunit 3 positively regulates plant immunity through its histone acetyltransferase and radical S-adenosylmethionine domains. BMC Plant Biology 13:102

doi: 10.1186/1471-2229-13-102
[64]

Huang L, Dong H, Zhou D, Li M, Liu Y, et al. 2018. Systematic identification of long non-coding RNAs during pollen development and fertilization in Brassica rapa. The Plant Journal 96:203−22

doi: 10.1111/tpj.14016
[65]

Chen L, Luan Y, Zhai J. 2015. Sp-miR396a-5p acts as a stress- responsive genes regulator by conferring tolerance to abiotic stresses and susceptibility to Phytophthora nicotianae infection in transgenic tobacco. Plant Cell Reports 34:2013−25

doi: 10.1007/s00299-015-1847-0
[66]

Shen Y, Liang D, Lv X, Wang J, Xia H. 2019. Research progress in miRNAs in fruit trees. Journal of Fruit Science 36:228−39

doi: 10.13925/j.cnki.gsxb.20180268
[67]

Zhang Y, Fan X, Jiang J, Li M, Liu C. 2019. Analysis of the function of miRNA on the resistance to white-rot disease in Vitis davidii based on microRNA sequence. Journal of Fruit Science 36:143−52

doi: 10.13925/j.cnki.gsxb.20180165
[68]

Jiang N, Cui J, Shi Y, Yang G, Zhou X, et al. 2019. Tomato lncRNA23468 functions as a competing endogenous RNA to modulate NBS-LRR genes by decoying miR482b in the tomato-Phytophthora infestans interaction. Horticulture Research 6:28

doi: 10.1038/s41438-018-0096-0
[69]

Juan L, Wang G, Radovich M, Schneider BP, Clare SE, et al. 2013. Potential roles of microRNAs in regulating long intergenic noncoding RNAs. BMC Medical Genomics 6:S7

doi: 10.1186/1755-8794-6-s1-s7
[70]

Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, et al. 2007. Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genetics 39:1033−37

doi: 10.1038/ng2079
[71]

Kiefer B, Riemann M, Büche C, Kassemeyer HH, Nick P. 2002. The host guides morphogenesis and stomatal targeting in the grapevine pathogen Plasmopara viticola. Planta 215:387−93

doi: 10.1007/s00425-002-0760-2
[72]

Díez-Navajas AM, Wiedemann-Merdinoglu S, Greif C, Merdinoglu D. 2008. Nonhost versus host resistance to the grapevine downy mildew, Plasmopara viticola, studied at the tissue level. Phytopathology 98:776−80

doi: 10.1094/phyto-98-7-0776
[73]

Xu W, Yu Y, Ding J, Hua Z, Wang Y. 2010. Characterization of a novel stilbene synthase promoter involved in pathogen- and stress-inducible expression from Chinese wild Vitis pseudoreticulata. Planta 231:475

doi: 10.1007/s00425-009-1062-8
[74]

Lin C. 2005. Plant blue-light receptors. Planta 220:498−502

doi: 10.1007/s00425-004-1418-z
[75]

Yin X, Liu R, Su H, Su L, Guo Y, et al. 2017. Pathogen development and host responses to Plasmopara viticola in resistant and susceptible grapevines: an ultrastructural study. Horticulture Research 4:17033

doi: 10.1038/hortres.2017.33