[1]

Tahir MM, Li S, Liu Z, Fan L, Tang T, et al. 2022. Different miRNAs and hormones are involved in PEG-induced inhibition of adventitious root formation in apple. Scientia Horticulturae 303:111206

doi: 10.1016/j.scienta.2022.111206
[2]

Xia J, Liu M, Jia S. 2005. Water security problem in North China: research and perspective. Pedosphere 15:563−75

[3]

Gill SS, Tuteja N. 2010. Polyamines and abiotic stress tolerance in plants. Plant Signaling & Behavior 5:26−33

doi: 10.4161/psb.5.1.10291
[4]

Francini A, Sebastiani L. 2019. Abiotic stress effects on performance of horticultural crops. Horticulturae 5:67

doi: 10.3390/horticulturae5040067
[5]

Zhang Q, Weng F, Shi F, Shao L, Huo X. 2021. The Evolutionary Characteristics of Apple Production Layout in China from 1978 to 2016. Ciência Rural 51:e20200688

doi: 10.1590/0103-8478cr20200688
[6]

Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annual review of plant biology 59:651−81

doi: 10.1146/annurev.arplant.59.032607.092911
[7]

Jiang L, Shen W, Liu C, Tahir MM, Li X, et al. 2022. Engineering drought-tolerant apple by knocking down six GH3 genes and potential application of transgenic apple as a rootstock. Horticulture Research 9:uhac122

doi: 10.1093/hr/uhac122
[8]

Hou N, Li C, He J, Liu Y, Yu S, et al. 2022. MdMTA-mediated m6A modification enhances drought tolerance by promoting mRNA stability and translation efficiency of genes involved in lignin deposition and oxidative stress. New Phytologist 234:1294−314

doi: 10.1111/nph.18069
[9]

Niu C, Jiang L, Cao F, Liu C, Guo J, et al. 2022. Methylation of a MITE insertion in the MdRFNR1-1 promoter is positively associated with its allelic expression in apple in response to drought stress. The Plant Cell 34:3983−4006

doi: 10.1093/plcell/koac220
[10]

Li S, Tahir MM, Wu T, Xie L, Zhang X, et al. 2022. Transcriptome analysis reveals multiple genes and complex hormonal-mediated interactions with PEG during adventitious root formation in apple. International Journal of Molecular Sciences 23:976

doi: 10.3390/ijms23020976
[11]

Zhang X, Li S, Tang T, Liu Y, Tahir MM, et al. 2022. Comparison of morphological, physiological, and related-gene expression responses to saline-alkali stress in eight apple rootstock genotypes. Scientia Horticulturae 306:111455

doi: 10.1016/j.scienta.2022.111455
[12]

Zhang X, Tahir MM, Li S, Tang T, Mao J, et al. 2022. Effect of exogenous abscisic acid (ABA) on the morphology, phytohormones, and related gene expression of developing lateral roots in ‘Qingzhen 1’apple plants. Plant Cell, Tissue and Organ Culture (PCTOC) 148:23−34

doi: 10.1007/s11240-021-02157-5
[13]

Hayat F, Qiu C, Xu X, Wang Y, Wu T, et al. 2019. Rootstocks influence morphological and biochemical changes in young 'Red Fuji' apple plants. International Journal of Agriculture & Biology 21:1097−105

[14]

Yang W, Chen X, Saudreau M, Zhang X, Zhang M, et al. 2016. Canopy structure and light interception partitioning among shoots estimated from virtual trees: comparison between apple cultivars grown on different interstocks on the Chinese Loess Plateau. Trees 30:1723−34

doi: 10.1007/s00468-016-1403-8
[15]

Ennajeh M, Vadel AM, Cochard H, Khemira H. 2010. Comparative impacts of water stress on the leaf anatomy of a drought-resistant and a drought-sensitive olive cultivar. The Journal of Horticultural Science and Biotechnology 85:289−94

doi: 10.1080/14620316.2010.11512670
[16]

Aparecido LMT, Miller GR, Cahill AT, Moore GW. 2017. Leaf surface traits and water storage retention affect photosynthetic responses to leaf surface wetness among wet tropical forest and semiarid savanna plants. Tree Physiology 37:1285−300

doi: 10.1093/treephys/tpx092
[17]

Zhang F, Zhang K, Du C, Li J, Xing Y, et al. 2015. Effect of drought stress on anatomical structure and chloroplast ultrastructure in leaves of sugarcane. Sugar Tech 17:41−48

doi: 10.1007/s12355-014-0337-y
[18]

Chakherchaman S, Arbat HK, Yarnia M, Mostafaei H, Hassanpanah D, et al. 2009. Study on relations between relative water content, cell membrane stability and duration of growth period with grain yield of lentil genotypesunder drought stress and non-stress conditions. International Meeting on Soil Fertility Land Management and Agroclimatology. Turkey, 2008. pp. 749−55

[19]

Wang Z, Li G, Sun H, Ma L, Guo Y, et al. 2018. Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biology open 7:bio035279

doi: 10.1242/bio.035279
[20]

Schapendonk AHCM, Spitters CJT, Groot PJ. 1989. Effects of water stress on photosynthesis and chlorophyll fluorescence of five potato cultivars. Potato Research 32:17−32

doi: 10.1007/BF02365814
[21]

Pavlovic D, Nikolic B, Djurovic S, Waisi H, Andjelkovic A, et al. 20154. Chlorophyll as a measure of plant health: Agroecological aspects. Pesticidi i Fitomedicina 29:21−34

doi: 10.2298/pif1401021p
[22]

Hashimoto H, Uragami C, Cogdell RJ. 2016. Carotenoids and photosynthesis. In Carotenoids in Nature. Subcellular Biochemistry, eds. Stange C. vol 79. Switzerland: Springer, Cham. pp. 111–39. https://doi.org/10.1007/978-3-319-39126-7_4

[23]

Li FL, Bao WK, Wu N. 2009. Effects of water stress on growth, dry matter allocation and water-use efficiency of a leguminous species, Sophora davidii. Agroforestry systems 77:193−201

doi: 10.1007/s10457-008-9199-1
[24]

Zivcak M, Brestic M, Sytar O. 2016. Osmotic adjustment and plant adaptation to drought stress. In Drought Stress Tolerance in Plants, eds. Hossain M, Wani S, Bhattacharjee S, Burritt D, Tran LS. Vol 1. pp. 105–43. Switzerland: Springer, Cham. https://doi.org/10.1007/978-3-319-28899-4_5

[25]

Du Y, Zhao Q, Chen L, Yao X, Zhang W, et al. 2020. Effect of drought stress on sugar metabolism in leaves and roots of soybean seedlings. Plant Physiology and Biochemistry 146:1−12

doi: 10.1016/j.plaphy.2019.11.003
[26]

Jia X, Jia X, Li T, Wang Y, Sun X, et al. 2021. MdATG5a induces drought tolerance by improving the antioxidant defenses and promoting starch degradation in apple. Plant Science 312:111052

doi: 10.1016/j.plantsci.2021.111052
[27]

Couchoud M, Der C, Girodet S, Vernoud V, Prudent M, Leborgne-Castel N. 2019. Drought stress stimulates endocytosis and modifies membrane lipid order of rhizodermal cells of Medicago truncatula in a genotype-dependent manner. BMC Plant Biology 19:221

doi: 10.1186/s12870-019-1814-y
[28]

Comas LH, Becker SR, Cruz VMV, Byrne PF, Dierig DA. 2013. Root traits contributing to plant productivity under drought. Frontiers in Plant Science 4:442

doi: 10.3389/fpls.2013.00442
[29]

Boudiar R, Casas AM, Gioia T, Fiorani F, Nagel KA, et al. 2020. Effects of low water availability on root placement and shoot development in landraces and modern barley cultivars. Agronomy 10:134

doi: 10.3390/agronomy10010134
[30]

Tahir MM, Zhang X, Shah K, Hayat F, Li S, et al. 2021. Nitrate application affects root morphology by altering hormonal status and gene expression patterns in B9 apple rootstock nursery plants. Fruit Research 1:14

doi: 10.48130/frures-2021-0014
[31]

Fang Y, Du Y, Wang J, Wu A, Qiao S, et al. 2017. Moderate drought stress affected root growth and grain yield in old, modern and newly released cultivars of winter wheat. Frontiers in Plant Science 8:672

doi: 10.3389/fpls.2017.00672
[32]

Gao D, Wang S, Wang L, Li Z, Pan N, et al. 2022. Enhanced coupling of light use efficiency and water use efficiency in arid and semi-arid environments. Ecohydrology 15:e2391

doi: 10.1002/eco.2391
[33]

Vitkunaite A, Laurinaviciene A, Plancoulaine B, Rasmusson A, Levenson R, et al. 2021. Intranuclear birefringent inclusions in paraffin sections by polychromatic polarization microscopy. Scientific Reports 11:6275

doi: 10.1038/s41598-021-85667-8
[34]

Shivakrishna P, Reddy KA, Rao DM. 2018. Effect of PEG-6000 imposed drought stress on RNA content, relative water content (RWC), and chlorophyll content in peanut leaves and roots. Saudi Journal of Biological Sciences 25:285−89

doi: 10.1016/j.sjbs.2017.04.008
[35]

Lv C, Huang Y, Sun W, Yu L, Hu Z. 2022. Elevated [CO2] raises the temperature optimum of photosynthesis and thus promotes net photosynthesis of winter wheat and rice. Physiologia Plantarum 174:e13757

doi: 10.1111/ppl.13757
[36]

Dong C, Zhang M, Wei F, Guo Y, Qin L, et al. 2022. Inhibition of red chlorophyll catabolite reductase improved chlorophyll and carotenoid synthesis in tobacco. Plant Cell, Tissue and Organ Culture (PCTOC) 148:687−98

doi: 10.1007/s11240-022-02228-1
[37]

Zhang H, Zhou Y, Kong Q, Dong W, Lin Z. 2021. Toxicity of naphthenic acids on the chlorophyll fluorescence parameters and antioxidant enzyme activity of Heterosigma akashiwo. Antioxidants 10:1582

doi: 10.3390/antiox10101582
[38]

Sexton TM, Steber CM, Cousins AB. 2021. Leaf temperature impacts canopy water use efficiency independent of changes in leaf level water use efficiency. Journal of Plant Physiology 258:153357

doi: 10.1016/j.jplph.2020.153357
[39]

Prasad LK, Chandrasekhara Rao C, Reddy DD, Padmaja K, Johnson N. 2022. A New Extractant for Concurrent Estimation of Nicotine, Reducing Sugars and Chlorides in Tobacco Cured Leaf. Communications in Soil Science and Plant Analysis 53:1685−91

doi: 10.1080/00103624.2022.2063315
[40]

Xu W, Lu N, Kikuchi M, Takagaki M. 2021. Effects of node position and electric conductivity of nutrient solution on adventitious rooting of nasturtium (Tropaeolum majus L.) cuttings. Agronomy 11:363

doi: 10.3390/agronomy11020363
[41]

Liu S, Jian S, Li X, Wang Y. 2021. Wide–narrow row planting pattern increases root lodging resistance by adjusting root architecture and root physiological activity in maize (Zea mays L.) in Northeast China. Agriculture 11:517

doi: 10.3390/agriculture11060517
[42]

Liu P, Zhang S, Shang M. 2021. Effect of the membership function type on the fuzzy risk of allowable groundwater drawdown calculation results. Stochastic Environmental Research and Risk Assessment 35:1883−94

doi: 10.1007/s00477-020-01950-6