[1] |
Tang C, Huang Z, Jin C, He J, Wang J, et al. 2009. Explosion characteristics of hydrogen-nitrogen-air mixtures at elevated pressures and temperatures. International Journal of Hydrogen Energy 34:554−61 doi: 10.1016/j.ijhydene.2008.10.028 |
[2] |
Giurcan V, Mitu M, Razus D, Oancea D. 2017. Pressure and temperature influence on propagation indices of n -butane–air gaseous mixtures. Process Safety and Environmental Protection 111:94−101 doi: 10.1016/j.psep.2017.06.020 |
[3] |
Wang Z, Pan M, Jiang J. 2013. Experimental investigation of gas explosion in single vessel and connected vessels. Journal of Loss Prevention in the Process Industries 26:1094−99 doi: 10.1016/j.jlp.2013.04.007 |
[4] |
Maremonti M, Russo G, Salzano E, Tufano V. 1999. Numerical simulation of gas explosions in linked vessels. Journal of Loss Prevention in the Process Industries 12:189−94 doi: 10.1016/S0950-4230(98)00061-8 |
[5] |
Zhang K, Wang Z, Gong J, Liu M, Dou Z, et al. 2017. Experimental study of effects of ignition position, initial pressure and pipe length on H2-air explosion in linked vessels. Journal of Loss Prevention in the Process Industries 50:295−300 doi: 10.1016/j.jlp.2017.09.014 |
[6] |
Zhang K, Wang Z, Yan C, Cui Y, Dou Z, et al. 2017. Effect of size on methane-air mixture explosions and explosion suppression in spherical vessels connected with pipes. Journal of Loss Prevention in the Process Industries 49:785−90 doi: 10.1016/j.jlp.2017.02.013 |
[7] |
Singh J. 1978. Gas explosions in single and compartmented vessels. Thesis. Imperial College London (University of London), U.K. |
[8] |
Razus D, Oancea D, Chirila F, Ionescu N. 2003. Transmission of an explosion between linked vessels. Fire Safety Journal 38:147−63 doi: 10.1016/S0379-7112(02)00053-X |
[9] |
Bartknecht W. (Eds.) 1981. Explosions Course Prevention Protection. Berlin: Springer-Verlag. pp. 251 |
[10] |
Benedetto D, Salzano A, Russo G. 2005. Predicting pressure piling by semi-empirical correlations. Fire Safety Journal 40:282−98 doi: 10.1016/j.firesaf.2005.01.003 |
[11] |
Benedetto D, Salzano A. 2010. CFD simulation of pressure piling. Journal of Loss Prevention in the Process Industries 23:498−506 doi: 10.1016/j.jlp.2010.03.003 |
[12] |
Zhang K, Wang Z, Jiang J, Sun W, You M. 2016. Effect of pipe length on methane explosion in interconnected vessels. Process Safety Progress 35:241−47 doi: 10.1002/prs.11819 |
[13] |
Zhen Y, Wang Z, Wang J, Wang C, Cui Y. 2018. Experimental and numerical study on connecting pipe and vessel size effects on methane–air explosions in interconnected vessels. Journal of Fire Sciences 36:164−80 doi: 10.1177/0734904118760165 |
[14] |
Ogungbemide D, Clouthier MP, Cloney C, Zalosh G, Ripley C, et al. 2021. Numerical modelling of the effects of vessel length-to-diameter ratio (L/D) on pressure piling. Journal of Loss Prevention in the Process Industries 70:104398 doi: 10.1016/j.jlp.2021.104398 |
[15] |
Willacy SK, Phylaktou HN, Andrews GE, Mkpadi MC. 2006. Detonation of hydrogen in a partially filled interconnecting vessels following an initial period of pressure piling. Combustion Science and Technology 178:1911−26 doi: 10.1080/00102200600790904 |
[16] |
Roser M, Vogl A, Radandt S, Malalasekera W, Parkin R. 1999. Investigations of flame front propagation between interconnected process vessels. Development of a new flame front propagation time prediction model. Journal of Loss Prevention in the Process Industries 12:421−36 doi: 10.1016/S0950-4230(99)00013-3 |
[17] |
Chen A. 1999. Experimental studies on the problems of flowing combustible gas explosion in pipeline. Journal of Explosion Shock Wave 19:347−52 |
[18] |
You M, Jiang J, Yu Y, Wang Z. 2012. Experimental study on premixed flammable gas explosion venting in linked vessels under the same effictive vent area. Explosion and Shock Waves 32(2):221−24 |
[19] |
Holbrow P, Andrews S, Lunn GA. 1996. Dust explosions in interconnected vented vessels. Journal of Loss Prevention in the Process Industries 9:91−103 doi: 10.1016/0950-4230(95)00055-0 |
[20] |
Jiang B, Tang M, Shi S. 2017. Multiparameter acceleration characteristics of premixed methane/air explosion in a semi-confined pipe. Journal of Loss Prevention in the Process Industries 49:139−44 doi: 10.1016/j.jlp.2017.06.012 |
[21] |
Baklanov AM, Valiulin SV, Dubtsov SN, Zamashchikov VV, Klishin VI, et al. 2015. Nanoaerosol fraction of man-made coal dust and its effect on the explosion hazard of dust-methane-air mixtures. Journal of Doklady Physical Chemistry 461:57−60 doi: 10.1134/S0012501615030033 |
[22] |
Jiang B, Lin B, Zhu C, Liu Q. 2013. Premixed methane-air deflagrations in a completely adiabatic pipe and the effect of the condition of the pipe wall. Journal of Loss Prevention in the Process Industries 26:782−91 doi: 10.1016/j.jlp.2013.02.004 |
[23] |
Zhu C, Lin B, Jiang B, Liu Q. 2013. Numerical simulation of blast wave oscillation effects on a premixed methane/air explosion in closed-end ducts. Journal of Loss Prevention in the Process Industries 26:851−61 doi: 10.1016/j.jlp.2013.02.013 |