[1] |
Zhang T, An B, Chen J, Yang L, Zhou Y, et al. 2018. Study on hydraulic characteristics of cryogenic pump in liquid air energy storage system. Cryogenics 2018:1−5+23 |
[2] |
Kim DJ, Sung HJ, Choi CH, Kim JS. 2017. Cavitation instabilities of an inducer in a cryogenic pump. Acta Astronautica 132:19−24 doi: 10.1016/j.actaastro.2016.12.007 |
[3] |
Kim DJ, Sung HJ, Choi CH, Kim JS. 2017. Cavitation instabilities during the development testing of a liquid oxygen pump. Journal of Propulsion and Power 33:187−92 doi: 10.2514/1.B35988 |
[4] |
Yoshida Y, Kikuta K, Hasegawa S, Shimagaki M, Tokumasu T. 2007. Thermodynamic effect on a cavitating inducer in liquid nitrogen. Journal of Fluids Engineering 129:273−78 doi: 10.1115/1.2427076 |
[5] |
Jiang Y, Liu Z, Chu B. 2017. Numerical simulation and visualized experimental study on cavitating of cryogenic fluids. Journal of propulsion technology 38:2771−77 doi: 10.13675/j.cnki.tjjs.2017.12.016 |
[6] |
Rahbarimanesh S, Brinkerhoff J, Huang J. 2018. Development and validation of a homogeneous flow model for simulating cavitation in cryogenic fluids. Applied Mathematical Modelling 56:584−611 doi: 10.1016/j.apm.2017.12.004 |
[7] |
Zhu J, Chen Y, Zhao D, Zhang X. 2015. Extension of the Schnerr–Sauer model for cryogenic cavitation. European Journal of Mechanics 52:1−10 doi: 10.1016/j.euromechflu.2015.01.008 |
[8] |
Sun T, Ma X, Wei Y, Wang C. 2016. Computational modeling of cavitating flows in liquid nitrogen by an extended transport-based cavitation model. Science China Technological Sciences 59:337−46 doi: 10.1007/s11431-015-5969-y |
[9] |
Shi S, Wang G, Ma R. 2012. Numerical study of cavitation in cryogenic fluids. Engineering mechanics 29:61−67 |
[10] |
Wang X, Wang G, Shi S, Wu Q. 2013. Characteristics of cavitating flow of liquid hydrogen in inducer. Journal of drainage and irrigation machinery engineering 31:558−64 |
[11] |
Chen T, Wang G, Huang B, Wang K. 2015. Numerical study of thermodynamic effects on liquid nitrogen cavitating Flows. Cryogenics 70:21−27 doi: 10.1016/j.cryogenics.2015.04.009 |
[12] |
Huang B, Wu Q, Wang G. 2014. Numerical investigation of cavitating flow in liquid hydrogen. International Journal of Hydrogen Energy 39:1698−709 doi: 10.1016/j.ijhydene.2013.11.025 |
[13] |
Hosangadi A, Ahuja V. 2005. Numerical study of cavitation in cryogenic fluids. Journal of Fluids Engineering 127:267:267−81 doi: 10.1115/1.1883238 |
[14] |
Zhang S, Li X, Zhu Z. 2018. Numerical simulation of cryogenic cavitating flow by an extended transport-based cavitation model with thermal effects. Cryogenics 92:98−104 doi: 10.1016/j.cryogenics.2018.04.008 |
[15] |
Wang Y, Zhang M, Chen T, Huang B. 2018. Unsteady cavitating flow of liquid hydrogen around the ogive body. Journal of Aerospace Power 33:1845−54 doi: 10.13224/j.cnki.jasp.2018.08.007 |
[16] |
Sun T, Wei Y, Wang C, Zhao C. 2014. Three-dimensional numerical simulation of cryogenic cavitating flows of liquid nitrogen around hydrofoil. Journal of Ship Mechanics 18:1434−43 |
[17] |
Fu Q, Cao L, Zhu R, Wang X. 2015. Analysis of cavitation of thermodynamic cavitation model for reactor coolant pump. Nuclear Power Engineering 36:128−32 doi: 10.13832/j.jnpe.2015.06.0128 |
[18] |
Tang F, Li J, Li Y, Zhou C. 2013. Influence of thermodynamics effect on inducer rotating cavitation under low temperature condition. Journal of rocket propulsion 39:29−34 |
[19] |
Cao D, He G, Pan H, Qin F. 2015. Numerical simulation of the thermal effect in the cavitating venturi flow. Journal of Thermophysics and Heat Transfer 29:190−97 doi: 10.2514/1.T4463 |
[20] |
Shi S, Wang G, Hu C. 2012. Study of liquid nitrogen cavitation flow. Transactions of Beijing Institute of Technology 32:484−87 doi: 10.15918/j.tbit1001-0645.2012.05.022 |