[1] |
Gaudinier A, Blackman BK. 2020. Evolutionary processes from the perspective of flowering time diversity. New Phytologist 225:1883−98 doi: 10.1111/nph.16205 |
[2] |
Andrés F, Coupland G. 2012. The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics 13:627−39 doi: 10.1038/nrg3291 |
[3] |
Bouché F, Lobet G, Tocquin P, Périlleux C. 2016. FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Research 44:D1167−D1171 doi: 10.1093/nar/gkv1054 |
[4] |
Ó'Maoiléidigh DS, Graciet E, Wellmer F. 2014. Gene networks controlling Arabidopsis thaliana flower development. New Phytologist 201:16−30 doi: 10.1111/nph.12444 |
[5] |
Turck F, Fornara F, Coupland G. 2008. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annual Review of Plant Biology 59:573−94 doi: 10.1146/annurev.arplant.59.032607.092755 |
[6] |
Song YH, Shim JS, Kinmonth-Schultz HA, Imaizumi T. 2015. Photoperiodic flowering: time measurement mechanisms in leaves. Annual Review of Plant Biology 66:441−64 doi: 10.1146/annurev-arplant-043014-115555 |
[7] |
Cao S, Luo X, Xu D, Tian X, Song J, et al. 2021. Genetic architecture underlying light and temperature mediated flowering in Arabidopsis, rice, and temperate cereals. New Phytologist 230:1731−45 doi: 10.1111/nph.17276 |
[8] |
Hill CB, Li C. 2016. Genetic architecture of flowering phenology in cereals and opportunities for crop improvement. Frontiers in Plant Science 7:1906 doi: 10.3389/fpls.2016.01906 |
[9] |
Battey NH. 2000. Aspects of seasonality. Journal of Experimental Botany 51:1769−80 doi: 10.1093/jexbot/51.352.1769 |
[10] |
Chalupka W, Cecich RA. 1997. Control of the first flowering in forest trees. Scandinavian Journal of Forest Research 12:102−11 doi: 10.1080/02827589709355390 |
[11] |
Albani MC, Coupland G. 2010. Comparative analysis of flowering in annual and perennial plants. Current Topics in Developmental Biology 91:323−48 doi: 10.1016/S0070-2153(10)91011-9 |
[12] |
Wang JW. 2014. Regulation of flowering time by the miR156-mediated age pathway. Journal of Experimental Botany 65:4723−30 doi: 10.1093/jxb/eru246 |
[13] |
Wang J, Czech B, Weigel D. 2009. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738−49 doi: 10.1016/j.cell.2009.06.014 |
[14] |
Wu G, Park MY, Conway SR, Wang J, Weigel D, et al. 2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750−59 doi: 10.1016/j.cell.2009.06.031 |
[15] |
Yant L, Mathieu J, Dinh TT, Ott F, Lanz C, et al. 2010. Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. Plant Cell 22:2156−70 doi: 10.1105/tpc.110.075606 |
[16] |
Mathieu J, Yant LJ, Mürdter F, Küttner F, Schmid M. 2009. Repression of flowering by the miR172 target SMZ. PLoS Biology 7:e1000148 doi: 10.1371/journal.pbio.1000148 |
[17] |
Yamaguchi A, Wu MF, Yang L, Wu G, Poethig RS, et al. 2009. The microRNA-regulated SBP-box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Developmental Cell 17:268−78 doi: 10.1016/j.devcel.2009.06.007 |
[18] |
Jung JH, Lee HJ, Ryu JY, Park CM. 2016. SPL3/4/5 Integrate developmental aging and photoperiodic signals into the FT-FD module in Arabidopsis flowering. Molecular Plant 9:1647−59 doi: 10.1016/j.molp.2016.10.014 |
[19] |
Wang H, Wang H. 2015. The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits. Molecular Plant 8:677−88 doi: 10.1016/j.molp.2015.01.008 |
[20] |
Wang JW, Park MY, Wang LJ, Koo Y, Chen XY, et al. 2011. miRNA control of vegetative phase change in trees. PLoS Genetics 7:e1002012 doi: 10.1371/journal.pgen.1002012 |
[21] |
Li H, Luo Y, Ma B, Hu J, Lv Z, et al. 2021. Hierarchical Action of Mulberry miR156 in the Vegetative Phase Transition. International Journal of Molecular Sciences 22:5550 doi: 10.3390/ijms22115550 |
[22] |
Ahsan MU, Hayward A, Irihimovitch V, Fletcher S, Tanurdzic M, et al. 2019. Juvenility and Vegetative Phase Transition in Tropical/Subtropical Tree Crops. Frontiers in Plant Science 10:729 doi: 10.3389/fpls.2019.00729 |
[23] |
Xing L, Zhang D, Li Y, Zhao C, Zhang S, et al. 2014. Genome-wide identification of vegetative phase transition-associated microRNAs and target predictions using degradome sequencing in Malus hupehensis. BMC Genomics 15:1125 doi: 10.1186/1471-2164-15-1125 |
[24] |
Lawrence EH, Springer CJ, Helliker BR, Poethig RS. 2021. MicroRNA156-mediated changes in leaf composition lead to altered photosynthetic traits during vegetative phase change. New Phytologist 231:1008−22 doi: 10.1111/nph.17007 |
[25] |
Lawrence EH, Leichty AR, Doody EE, Ma C, Strauss SH, et al. 2021. Vegetative phase change in Populus tremula x alba. New Phytologist 231:351−64 doi: 10.1111/nph.17316 |
[26] |
Niu S, Yuan H, Sun X, Porth I, Li Y, et al. 2016. A transcriptomics investigation into pine reproductive organ development. New Phytologist 209:1278−89 doi: 10.1111/nph.13680 |
[27] |
Shalom L, Shlizerman L, Zur N, Doron-Faigenboim A, Blumwald E, et al. 2015. Molecular characterization of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene family from Citrus and the effect of fruit load on their expression. Frontiers in Plant Science 6:389 doi: 10.3389/fpls.2015.00389 |
[28] |
Jiang Y, Peng J, Wang M, Su W, Gan X, et al. 2020. The Role of EjSPL3, EjSPL4, EjSPL5, and EjSPL9 in Regulating Flowering in Loquat (Eriobotrya japonica Lindl.). International Journal of Molecular Sciences 21:248 doi: 10.3390/ijms21010248 |
[29] |
Zhou Y, Gan X, Viñegra de la Torre N, Neumann U, Albani MC. 2021. Beyond flowering time: diverse roles of an APETALA2-like transcription factor in shoot architecture and perennial traits. New Phytologist 229:444−59 doi: 10.1111/nph.16839 |
[30] |
Song Y, Ito S, Imaizumi T. 2013. Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends in Plant 18:575−83 doi: 10.1016/j.tplants.2013.05.003 |
[31] |
Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T. 1999. A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960−2 doi: 10.1126/science.286.5446.1960 |
[32] |
Pin PA, Nilsson O. 2012. The multifaceted roles of FLOWERING LOCUS T in plant development. Plant, Cell & Environment 35:1742−55 doi: 10.1111/j.1365-3040.2012.02558.x |
[33] |
Wickland DP, Hanzawa Y. 2015. The FLOWERING LOCUS T/TERMINAL FLOWER 1 gene family: Functional evolution and molecular mechanisms. Molecular Plant 8:983−97 doi: 10.1016/j.molp.2015.01.007 |
[34] |
Hsu CY, Liu Y, Luthe DS, Yuceer C. 2006. Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. The Plant Cell 18:1846−61 doi: 10.1105/tpc.106.041038 |
[35] |
Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, et al. 2005. Ectopic expression of an FT homolog from citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Research 14:703−12 doi: 10.1007/s11248-005-6632-3 |
[36] |
Li C, Luo L, Fu Q, Niu L, Xu ZF. 2014. Isolation and functional characterization of JcFT, a FLOWERING LOCUS T (F |
[37] |
Odipio J, Getu B, Chauhan RD, Alicai T, Bart R, et al. 2020. Transgenic overexpression of endogenous FLOWERING LOCUS T-like gene MeFT1 produces early flowering in cassava. PLoS One 15:e0227199 doi: 10.1371/journal.pone.0227199 |
[38] |
Sinn JP, Held JB, Vosburg C, Klee SM, Orbovic V, et al. 2021. Flowering Locus T chimeric protein induces floral precocity in edible citrus. Plant Biotechnology Journal 19:215−17 doi: 10.1111/pbi.13463 |
[39] |
Song G, Walworth A, Lin T, Chen Q, Han X, et al. 2019. VcFT-induced mobile florigenic signals in transgenic and transgrafted blueberries. Horticulture Research 6:105 doi: 10.1038/s41438-019-0188-5 |
[40] |
Srinivasan C, Dardick C, Callahan A, Scorza R. 2012. Plum (Prunus domestica) trees transformed with poplar FT1 result in altered architecture, dormancy requirement, and continuous flowering. PLoS One 7:e40715 doi: 10.1371/journal.pone.0040715 |
[41] |
Wenzel S, Flachowsky H, Hanke MV. 2013. The Fast-track breeding approach can be improved by heat-induced expression of the FLOWERING LOCUS T genes from poplar (Populus trichocarpa) in apple (Malus × domestica Borkh.). Plant Cell Tissue and Organ Culture 115:127−37 doi: 10.1007/s11240-013-0346-7 |
[42] |
Zhang H, Harry DE, Ma C, Yuceer C, Hsu CY, et al. 2010. Precocious flowering in trees: the FLOWERING LOCUS T gene as a research and breeding tool in Populus. Journal of Experimental Botany 61:2549−60 doi: 10.1093/jxb/erq092 |
[43] |
Tränkner C, Lehmann S, Hoenicka H, Hanke MV, Fladung M, et al. 2010. Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta 232:1309−24 doi: 10.1007/s00425-010-1254-2 |
[44] |
Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, et al. 2006. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040−43 doi: 10.1126/science.1126038 |
[45] |
Kotoda N, Iwanami H, Takahashi S, Abe K. 2006. Antisense expression of MdTFL1, a TFL1-like gene, reduces the juvenile phase in apple. Journal of The American Society For Horticultural Science 131:74−81 doi: 10.21273/JASHS.131.1.74 |
[46] |
Mohamed R, Wang CT, Ma C, Shevchenko O, Dye SJ, et al. 2010. Populus CEN/TFL1 regulates first onset of flowering, axillary meristem identity and dormancy release in Populus. Plant Journal 62:674−88 doi: 10.1111/j.1365-313X.2010.04185.x |
[47] |
Varkonyi-Gasic E, Wang T, Voogd C, Jeon S, Drummond RSM, et al. 2019. Mutagenesis of kiwifruit CENTRORADIALIS-like genes transforms a climbing woody perennial with long juvenility and axillary flowering into a compact plant with rapid terminal flowering. Plant Biotechnology Journal 17:869−80 doi: 10.1111/pbi.13021 |
[48] |
Lee J, Lee I. 2010. Regulation and function of SOC1, a flowering pathway integrator. Journal of Experimental Botany 61:2247−54 doi: 10.1093/jxb/erq098 |
[49] |
Ma J, Chen X, Song Y, Zhang G, Zhou X, et al. 2021. MADS-box transcription factors MADS11 and DAL1 interact to mediate the vegetative-to-reproductive transition in pine. Plant Physiology 187:247−62 doi: 10.1093/plphys/kiab250 |
[50] |
Wei J, Liu D, Liu G, Tang J, Chen Y. 2016. Molecular cloning, characterization, and expression of MiSOC1: A homolog of the flowering gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 from Mango (Mangifera indica L.). Frontiers in Plant Science 7:1758 doi: 10.3389/fpls.2016.01758 |
[51] |
Jiang Y, Peng J, Zhu Y, Su W, Zhang L, et al. 2019. The role of EjSOC1s in flower initiation in Eriobotrya japonica. Frontiers in Plant Science 10:253 doi: 10.3389/fpls.2019.00253 |
[52] |
Tan FC, Swain SM. 2007. Functional characterization of AP3, SO |
[53] |
Li G, Cao C, Yang H, Wang J, Wei W, et al. 2020. Molecular cloning and potential role of DiSOC1s in flowering regulation in Davidia involucrata Baill. Plant Physiology Biochemistry 157:453−59 doi: 10.1016/j.plaphy.2020.11.003 |
[54] |
Voogd C, Wang T, Varkonyi-Gasic E. 2015. Functional and expression analyses of kiwifruit SOC1-like genes suggest that they may not have a role in the transition to flowering but may affect the duration of dormancy. Journal of Experimental Botany 66:4699−710 doi: 10.1093/jxb/erv234 |
[55] |
Wang J, Gao Z, Li H, Jiu S, Qu Y, et al. 2020. Dormancy-associated MADS-box (DAM) genes influence chilling requirement of sweet cherries and co-regulate flower development with SOC1 gene. International Journal of Molecular Sciences 21:921 doi: 10.3390/ijms21030921 |
[56] |
Gómez-Soto D, Ramos-Sánchez JM, Alique D, Conde D, Triozzi PM, et al. 2021. Overexpression of a SOC1-related gene promotes bud break in ecodormant poplars. Frontiers in Plant Science 12:670497 doi: 10.3389/fpls.2021.670497 |
[57] |
Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM. 1992. LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843−59 doi: 10.1016/0092-8674(92)90295-N |
[58] |
Blázquez MA, Soowal LN, Lee I, Weigel D. 1997. LEAFY expression and flower initiation in Arabidopsis. Development 124:3835−44 doi: 10.1242/dev.124.19.3835 |
[59] |
Rottmann WH, Meilan R, Sheppard LA, Brunner AM, Skinner JS, et al. 2000. Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis. The Plant Journal 22:235−45 doi: 10.1046/j.1365-313x.2000.00734.x |
[60] |
Weigel D, Nilsson O. 1995. A developmental switch sufficient for flower initiation in diverse plants. Nature 377:495−500 doi: 10.1038/377495a0 |
[61] |
Pena L, Martin-Trillo M, Juarez J, Pina JA, Navarro L, Martinez-Zapater JM. 2001. Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nat Biotechnology 19:263−67 doi: 10.1038/85719 |
[62] |
Wang Y, Yu H, He X, Lu T, Huang X, Luo C. 2022. Isolation and functional characterization of a LEAFY gene in mango (Mangifera indica L.). International Journal of Molecular Sciences 23:3974 doi: 10.3390/ijms23073974 |
[63] |
An L, Lei H, Shen X, Li T. 2012. Identification and Characterization of PpLFL, a Homolog of FLORICAULA/LEAFY in Peach (Prunus persica). Plant Molecular Biology Reporter 30:1488−95 doi: 10.1007/s11105-012-0459-x |
[64] |
Ding F, Zhang S, Chen H, Peng H, Lu J, et al. 2018. Functional analysis of a homologue of the FLORICAULA/LEAFY gene in litchi (Litchi chinensis Sonn.) revealing its significance in early flowering process. Genes Genomics 40:1259−67 doi: 10.1007/s13258-018-0739-4 |
[65] |
Mandel MA, Yanofsky MF. 1995. A gene triggering flower formation in Arabidopsis. Nature 377:522−24 doi: 10.1038/377522a0 |
[66] |
Kaufmann K, Wellmer F, Muiño JM, Ferrier T, Wuest SE, et al. 2010. Orchestration of floral initiation by APETALA1. Science 328:85−89 doi: 10.1126/science.1185244 |
[67] |
Alejandra Mandel M, Gustafson-Brown C, Savidge B, Yanofsky MF. 1992. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360:273−7 doi: 10.1038/360273a0 |
[68] |
Huang H, Wang S, Jiang J, Liu G, Li H, et al. 2014. Overexpression of BpAP1 induces early flowering and produces dwarfism in Betula platyphylla × Betula pendula. Physiologia Plantarum 151:495−506 doi: 10.1111/ppl.12123 |
[69] |
Moon J, Suh SS, Lee H, Choi KR, Hong CB, et al. 2003. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. The Plant Journal 35:613−23 doi: 10.1046/j.1365-313X.2003.01833.x |
[70] |
Blazquez MA, Green R, Nilsson O, Sussman MR, Weigel D. 1998. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. The Plant Cell 10:791−800 doi: 10.1105/tpc.10.5.791 |
[71] |
Yamaguchi N, Winter CM, Wu MF, Kanno Y, Yamaguchi A, et al. 2014. Gibberellin acts positively then negatively to control onset of flower formation in Arabidopsis. Science 344:638−41 doi: 10.1126/science.1250498 |
[72] |
Meilan R. 1997. Floral induction in woody angiosperms. New Forest 14:179−202 doi: 10.1023/A:1006560603966 |
[73] |
Bangerth KF. 2009. Floral induction in mature, perennial angiosperm fruit trees: Similarities and discrepancies with annual/biennial plants and the involvement of plant hormones. Scientia Horticulturae 122:153−63 doi: 10.1016/j.scienta.2009.06.014 |
[74] |
Williams DR, Ross JJ, Reid JB, Potts BM. 1999. Response of Eucalyptus nitens seedlings to gibberellin biosynthesis inhibitors. Plant Growth Regulation 27:125−29 doi: 10.1023/A:1006176928861 |
[75] |
Yuceer C, Kubiske ME, Harkess RL, Land SB. 2003. Effects of induction treatments on flowering in Populus deltoides. Tree Physiology 23:489−95 doi: 10.1093/treephys/23.7.489 |
[76] |
Hackett WP. 1985. Juvenility, Maturation, and Rejuvenation in Woody Plants. In Horticultural Reviews, ed. Janick J. 7: XI,569. US: John Wiley & Sons. pp. 109−55. https://doi.org/10.1002/9781118060735.ch3 |
[77] |
Boss PK, Thomas MR. 2002. Association of dwarfism and floral induction with a grape 'green revolution' mutation. Nature 416:847−50 doi: 10.1038/416847a |
[78] |
Pharis RP, Webber JE, Ross SD. 1987. The promotion of flowering in forest trees by gibberellin-A47 and Cultural treatments: A review of the possible mechanisms. Forest Ecology and Management 19:65−84 doi: 10.1016/0378-1127(87)90012-0 |
[79] |
Satake A, Nagahama A, Sasaki E. 2022. A cross-scale approach to unravel the molecular basis of plant phenology in temperate and tropical climates. New Phytologist 233:2340−53 doi: 10.1111/nph.17897 |
[80] |
Nagahama A, Yahara T. 2019. Quantitative comparison of flowering phenology traits among trees, perennial herbs, and annuals in a temperate plant community. American Journal of Botany 106:1545−1557 doi: 10.1002/ajb2.1387 |
[81] |
Singh KP, Kushwaha CP. 2006. Diversity of flowering and fruiting phenology of trees in a tropical deciduous forest in India. Annals of Botany 97:265−76 doi: 10.1093/aob/mcj028 |
[82] |
van Schaik CP, Terborgh JW, Wright SJ. 1993. The Phenology of Tropical Forests - Adaptive Significance and Consequences for Primary Consumers. Annual Review of Ecology and Systematics 24:353−77 doi: 10.1146/annurev.es.24.110193.002033 |
[83] |
Borchert R, Meyer SA, Felger RS, Porter-Bolland L. 2004. Environmental control of flowering periodicity in Costa Rican and Mexican tropical dry forests. Global Ecology and Biogeography 13:409−25 doi: 10.1111/j.1466-822X.2004.00111.x |
[84] |
Butt N, Seabrook L, Maron M, Law BS, Dawson TP, et al. 2015. Cascading effects of climate extremes on vertebrate fauna through changes to low-latitude tree flowering and fruiting phenology. Global Change Biolology 21:3267−77 doi: 10.1111/gcb.12869 |
[85] |
Morellato LPC, Talora DC, Takahasi A, Bencke CC, Romera EC, et al. 2000. Phenology of Atlantic rain forest trees: A comparative study. Biotropica 32:811−23 doi: 10.1111/j.1744-7429.2000.tb00620.x |
[86] |
Curran LM, Caniago I, Paoli GD, Astianti D, Kusneti M, et al. 1999. Impact of El Niño and logging on canopy tree recruitment in Borneo. Science 286:2184−8 doi: 10.1126/science.286.5447.2184 |
[87] |
Brearley FQ, Proctor J, Suriantata, Nagy L, Dalrymple G, et al. 2007. Reproductive phenology over a 10-year period in a lowland evergreen rain forest of central Borneo. Journal of Ecology 95:828−39 doi: 10.1111/j.1365-2745.2007.01258.x |
[88] |
Grainger J. 1939. Studies upon the time of flowering of plants: Anatomical, floristic and phenological aspects of the problem. Annals of Applied Biology 26:684−704 doi: 10.1111/j.1744-7348.1939.tb06994.x |
[89] |
Tan FC, Swain SM. 2006. Genetics of flower initiation and development in annual and perennial plants. Physiologia Plantarum 128:8−17 doi: 10.1111/j.1399-3054.2006.00724.x |
[90] |
Tooke F, Battey NH. 2010. Temperate flowering phenology. Journal of Experimental Botany 61:2853−62 doi: 10.1093/jxb/erq165 |
[91] |
Brunner AM, Nilsson O. 2004. Revisiting tree maturation and floral initiation in the poplar functional genomics era. New Phytologist 164:43−51 doi: 10.1111/j.1469-8137.2004.01165.x |
[92] |
Liang Q, Song K, Lu M, Dai T, Yang J, et al. 2022. Transcriptome and metabolome analyses reveal the involvement of multiple pathways in flowering intensity in mango. Frontiers in Plant Science 13:933923 doi: 10.3389/fpls.2022.933923 |
[93] |
Meng X, Li Y, Yuan Y, Zhang Y, Li H, et al. 2020. The regulatory pathways of distinct flowering characteristics in Chinese jujube. Horticulture Research 7:123 doi: 10.1038/s41438-020-00344-7 |
[94] |
Kudoh H. 2016. Molecular phenology in plants: in natura systems biology for the comprehensive understanding of seasonal responses under natural environments. New Phytologist 210:399−412 doi: 10.1111/nph.13733 |
[95] |
Chen Z, Rao P, Yang X, Su X, Zhao T, et al. 2018. A global view of transcriptome dynamics during male floral bud development in Populus tomentosa. Scientific Reports 8:722 doi: 10.1038/s41598-017-18084-5 |
[96] |
Fan Z, Li J, Li X, Wu B, Wang J, et al. 2015. Genome-wide transcriptome profiling provides insights into floral bud development of summer-flowering Camellia azalea. Scientific Reports 5:9729 doi: 10.1038/srep09729 |
[97] |
Hassankhah A, Rahemi M, Ramshini H, Sarikhani S, Vahdati K. 2020. Flowering in Persian walnut: patterns of gene expression during flower development. BMC Plant Biology 20:136 doi: 10.1186/s12870-020-02372-w |
[98] |
Kobayashi MJ, Takeuchi Y, Kenta T, Kume T, Diway B, Shimizu KK. 2013. Mass flowering of the tropical tree Shorea beccariana was preceded by expression changes in flowering and drought-responsive genes. Molecular Ecology 22:4767−82 doi: 10.1111/mec.12344 |
[99] |
Liu K, Feng S, Pan Y, Zhong J, Chen Y, et al. 2016. Transcriptome analysis and identification of genes associated with floral transition and flower development in sugar apple (Annona squamosa L.). Frontiers in Plant Science 7:1695 doi: 10.3389/fpls.2016.01695 |
[100] |
Miyazaki Y, Maruyama Y, Chiba Y, Kobayashi MJ, Joseph B, et al. 2014. Nitrogen as a key regulator of flowering in Fagus crenata: understanding the physiological mechanism of masting by gene expression analysis. Ecology Letters 17:1299−309 doi: 10.1111/ele.12338 |
[101] |
Wang Z, Ma W, Zhu T, Lu N, Ouyang F, et al. 2020. Multi-omics sequencing provides insight into floral transition in Catalpa bungei. C.A. Mey. BMC Genomics 21:508 doi: 10.1186/s12864-020-06918-y |
[102] |
Dai X, Lin Y, Zhou T, Li Y, Liao X, et al. 2022. Natural annual transcriptome dynamics of Euc |
[103] |
Hsu CY, Adams JP, Kim H, No K, Ma C, et al. 2011. FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. PNAS 108:10756−61 doi: 10.1073/pnas.1104713108 |
[104] |
Cooke JE, Eriksson ME, Junttila O. 2012. The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant, Cell & Environment 35:1707−28 doi: 10.1111/j.1365-3040.2012.02552.x |
[105] |
Maurya JP, Bhalerao RP. 2017. Photoperiod- and temperature-mediated control of growth cessation and dormancy in trees: a molecular perspective. Annals of Botany 120:351−60 doi: 10.1093/aob/mcx061 |
[106] |
Singh RK, Bhalerao RP, Eriksson ME. 2021. Growing in time: exploring the molecular mechanisms of tree growth. Tree Physiology 41:657−78 doi: 10.1093/treephys/tpaa065 |
[107] |
Jansson S, Douglas CJ. 2007. Populus: a model system for plant biology. Annual Review of Plant Biology 58:435−58 doi: 10.1146/annurev.arplant.58.032806.103956 |
[108] |
Ding J, Nilsson O. 2016. Molecular regulation of phenology in trees—because the seasons they are a-changin'. Current Opinion In Plant Biology 29:73−9 doi: 10.1016/j.pbi.2015.11.007 |
[109] |
Borthakur D, Busov V, Cao X, Du Q, Gailing O, et al. 2022. Current status and trends in forest genomics. Forestry Research 2:11 doi: 10.48130/fr-2022-0011 |
[110] |
Yordanov YS, Ma C, Strauss SH, Busov VB. 2014. EARLY BUD-BREAK 1 (EBB1) is a regulator of release from seasonal dormancy in poplar trees. PNAS 111:10001−6 doi: 10.1073/pnas.1405621111 |
[111] |
Azeez A, Zhao YC, Singh RK, Yordanov YS, Dash M, et al. 2021. EARLY BUD-BREAK 1 and EARLY BUD-BREAK 3 control resumption of poplar growth after winter dormancy. Nature Communications 12:1123 doi: 10.1038/s41467-021-21449-0 |
[112] |
Singh RK, Svystun T, AlDahmash B, Jönsson AM, Bhalerao RP. 2017. Photoperiod- and temperature-mediated control of phenology in trees — a molecular perspective. New Phytologist 213:511−24 doi: 10.1111/nph.14346 |
[113] |
Ding J, Böhlenius H, Rühl MG, Chen P, Sane S, et al. 2018. GIGANTEA-like genes control seasonal growth cessation in Populus. New Phytologist 218:1491−503 doi: 10.1111/nph.15087 |
[114] |
Ding J, Zhang B, Li Y, André D, Nilsson O. 2021. Phytochrome B and PHYTOCHROME INTERACTING FACTOR8 modulate seasonal growth in trees. New Phytologist 232:2339−52 doi: 10.1111/nph.17350 |
[115] |
Nilsson O. 2022. Winter dormancy in trees. Current Biology 32:R630−R634 doi: 10.1016/j.cub.2022.04.011 |
[116] |
Ramos-Sanchez JM, Triozzi PM, Alique D, Geng F, Gao M, et al. 2019. LHY2 integrates night-length information to determine timing of poplar photoperiodic growth. Current Biology 29:2402−2406.E4 doi: 10.1016/j.cub.2019.06.003 |
[117] |
Andre D, Marcon A, Lee KC, Goretti D, Zhang B, et al. 2022. FLOWERING LOCUS T paralogs control the annual growth cycle in Populus trees. Current Biology 32:2988−2996.E4 doi: 10.1016/j.cub.2022.05.023 |
[118] |
Karlgren A, Gyllenstrand N, Källman T, Sundström JF, Moore D, et al. 2011. Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution. Plant Physiology 156:1967−77 doi: 10.1104/pp.111.176206 |
[119] |
Karlgren A, Gyllenstrand N, Clapham D, Lagercrantz U. 2013. FLOWERING LOCUS T/TERMINAL FLOWER1-Like Genes Affect Growth Rhythm and Bud Set in Norway Spruce. Plant Physiology 163:792−803 doi: 10.1104/pp.113.224139 |
[120] |
Gyllenstrand N, Clapham D, Källman T, Lagercrantz U. 2007. A Norway spruce FLOWERING LOCUS T homolog is implicated in control of growth rhythm in conifers. Plant Physiology 144:248−57 doi: 10.1104/pp.107.095802 |
[121] |
Chen J, Källman T, Ma X, Gyllenstrand N, Zaina G, et al. 2012. Disentangling the roles of history and local selection in shaping clinal variation of allele frequencies and gene expression in Norway spruce (Picea abies). Genetics 191:865−81 doi: 10.1534/genetics.112.140749 |
[122] |
Michaels SD, Amasino RM. 1999. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. The Plant Cell 11:949−56 doi: 10.1105/tpc.11.5.949 |
[123] |
Voogd C, Brian LA, Wu R, Wang T, Allan AC, et al. 2022. A MADS-box gene with similarity to FLC is induced by cold and correlated with epigenetic changes to control budbreak in kiwifruit. New Phytologist 233:2111−26 doi: 10.1111/nph.17916 |
[124] |
Díaz-Riquelme J, Lijavetzky D, Martínez-Zapater JM, Carmona MJ. 2009. Genome-wide analysis of MIKCC-type MADS box genes in grapevine. Plant Physiology 149:354−69 doi: 10.1104/pp.108.131052 |
[125] |
Leseberg CH, Li A, Kang H, Duvall M, Mao L. 2006. Genome-wide analysis of the MADS-box gene family in Populus trichocarpa. Gene 378:84−94 doi: 10.1016/j.gene.2006.05.022 |
[126] |
Kumar G, Arya P, Gupta K, Randhawa V, Acharya V, et al. 2016. Comparative phylogenetic analysis and transcriptional profiling of MADS-box gene family identified DAM and FLC-like genes in apple (Malusx domestica). Scientific Reports 6:20695 doi: 10.1038/srep20695 |
[127] |
Zhang J, Li Z, Mei L, Yao J, Hu C. 2009. PtFLC homolog from trifoliate orange (Poncirus trifoliata) is regulated by alternative splicing and experiences seasonal fluctuation in expression level. Planta 229:847−59 doi: 10.1007/s00425-008-0885-z |
[128] |
Agustí M, Mesejo C, Muñoz-Fambuena N, Vera-Sirera F, de Lucas M, et al. 2020. Fruit-dependent epigenetic regulation of flowering in Citrus. New Phytologist 225:376−84 doi: 10.1111/nph.16044 |
[129] |
Bielenberg DG, Wang Y, Li ZG, Zhebentyayeva T, Fan SH, et al. 2008. Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genetics & Genomes 4:495−507 doi: 10.1007/s11295-007-0126-9 |
[130] |
Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, et al. 2007. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes and Development 21:397−402 doi: 10.1101/gad.1518407 |
[131] |
Yamane H, Wada M, Honda C, Matsuura T, Ikeda Y, et al. 2019. Overexpression of Prunus DAM6 inhibits growth, represses bud break competency of dormant buds and delays bud outgrowth in apple plants. PLoS One 14:e0214788 doi: 10.1371/journal.pone.0214788 |
[132] |
Wu R, Tomes S, Karunairetnam S, Tustin SD, Hellens RP, et al. 2017. SVP-like MADS Box Genes Control Dormancy and Budbreak in Apple. Frontiers in Plant Science 8:477 doi: 10.3389/fpls.2017.00477 |
[133] |
Leida C, Conesa A, Llácer G, Badenes ML, Ríos G. 2012. Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner. New Phytologist 193:67−80 doi: 10.1111/j.1469-8137.2011.03863.x |
[134] |
Saito T, Bai S, Imai T, Ito A, Nakajima I, et al. 2015. Histone modification and signalling cascade of the dormancy-associated MADS-box gene, PpMADS13-1, in Japanese pear (Pyrus pyrifolia) during endodormancy. Plant, Cell & Environment 38:1157−66 doi: 10.1111/pce.12469 |
[135] |
Wu R, Cooney J, Tomes S, Rebstock R, Karunairetnam S, et al. 2021. RNAi-mediated repression of dormancy-related genes results in evergrowing apple trees. Tree Physiology 41:1510−23 doi: 10.1093/treephys/tpab007 |
[136] |
Falavigna VDS, Guitton B, Costes E, Andrés F. 2018. I want to (Bud) break free: The potential role of DAM and SVP-like genes in regulating dormancy cycle in temperate fruit trees. Frontiers in Plant Science 9:1990 doi: 10.3389/fpls.2018.01990 |
[137] |
da Silveira Falavigna V, Severing E, Lai X, Estevan J, Farrera I, et al. 2021. Unraveling the role of MADS transcription factor complexes in apple tree dormancy. New Phytologist 232:2071−88 doi: 10.1111/nph.17710 |
[138] |
Moser M, Asquini E, Miolli GV, Weigl K, Hanke MV, et al. 2020. The MADS-box gene MdDAM1 controls growth cessation and bud dormancy in apple. Frontiers in Plant Science 11:1003 doi: 10.3389/fpls.2020.01003 |
[139] |
Singh RK, Maurya JP, Azeez A, Miskolczi P, Tylewicz S, et al. 2018. A genetic network mediating the control of bud break in hybrid aspen. Nature Communications 9:4173 doi: 10.1038/s41467-018-06696-y |
[140] |
Singh RK, Miskolczi P, Maurya JP, Bhalerao RP. 2019. A Tree ortholog of SHORT VEGETATIVE PHASE Floral repressor mediates photoperiodic control of bud dormancy. Current Biology 29:128−133.E2 doi: 10.1016/j.cub.2018.11.006 |
[141] |
Yang Q, Gao Y, Wu X, Moriguchi T, Bai S, et al. 2021. Bud endodormancy in deciduous fruit trees: advances and prospects. Horticuture Research 8:139 doi: 10.1038/s41438-021-00575-2 |
[142] |
Wu R, Wang T, Warren BAW, Allan AC, Macknight RC, et al. 2017. Kiwifruit SVP2 gene prevents premature budbreak during dormancy. Journal of Experimental Botany 68:1071−82 doi: 10.1093/jxb/erx014 |
[143] |
André D, Zambrano JA, Zhang B, Lee KC, Rühl M, et al. 2022. Populus SVL acts in leaves to modulate the timing of growth cessation and bud set. Frontiers in Plant Science 13:823019 doi: 10.3389/fpls.2022.823019 |
[144] |
Goralogia GS, Howe GT, Brunner AM, Helliwell E, Nagle MF, et al. 2021. Overexpression of SHORT VEGETATIVE PHASE-LIKE (SVL) in Populus delays onset and reduces abundance of flowering in field-grown trees. Horticulture Research 8:167 doi: 10.1038/s41438-021-00600-4 |
[145] |
Moon J, Lee H, Kim M, Lee I. 2005. Analysis of flowering pathway integrators in Arabidopsis. Plant and Cell Physiology 46:292−99 doi: 10.1093/pcp/pci024 |
[146] |
Mouhu K, Kurokura T, Koskela EA, Albert VA, Elomaa P, et al. 2013. The Fragaria vesca homolog of suppressor of overexpression of constans1 represses flowering and promotes vegetative growth. The Plant Cell 25:3296−310 doi: 10.1105/tpc.113.115055 |
[147] |
Cseke LJ, Zheng J, Podila GK. 2003. Characterization of PTM5 in aspen trees: a MADS-box gene expressed during woody vascular development. Gene 318:55−67 doi: 10.1016/S0378-1119(03)00765-0 |
[148] |
Olukolu BA, Trainin T, Fan S, Kole C, Bielenberg DG, et al. 2009. Genetic linkage mapping for molecular dissection of chilling requirement and budbreak in apricot (Prunus armeniaca L.). Genome 52:819−28 doi: 10.1139/G09-050 |
[149] |
Manghwar H, Lindsey K, Zhang X, Jin S. 2019. CRISPR/Cas system: Recent advances and future prospects for genome editing. Trends In Plant Science 24:1102−25 doi: 10.1016/j.tplants.2019.09.006 |
[150] |
Yamagishi N, Li C, Yoshikawa N. 2016. Promotion of flowering by Apple latent spherical virus vector and virus elimination at high temperature allow accelerated breeding of apple and pear. Frontiers in Plant Science 7:171 doi: 10.3389/fpls.2016.00171 |
[151] |
Freiman A, Shlizerman L, Golobovitch S, Yablovitz Z, Korchinsky R, et al. 2012. Development of a transgenic early flowering pear (Pyrus communis L.) genotype by RNAi silencing of PcTFL1-1 and PcTFL1-2. Planta 235:1239−51 doi: 10.1007/s00425-011-1571-0 |
[152] |
Klocko AL, Ma C, Robertson S, Esfandiari E, Nilsson O, et al. 2016. FT overexpression induces precocious flowering and normal reproductive development in Eucalyptus. Plant Biotechnology Journal 14:808−19 doi: 10.1111/pbi.12431 |
[153] |
Putterill J, Varkonyi-Gasic E. 2016. FT and florigen long-distance flowering control in plants. Current Opinion In Plant Biology 33:77−82 doi: 10.1016/j.pbi.2016.06.008 |
[154] |
Fitter AH, Fitter RSR. 2002. Rapid changes in flowering time in British plants. Science 296:1689−91 doi: 10.1126/science.1071617 |
[155] |
Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD. 2011. Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science 333:1024−6 doi: 10.1126/science.1206432 |
[156] |
Satake A, Kawagoe T, Saburi Y, Chiba Y, Sakurai G, Kudoh H. 2013. Forecasting flowering phenology under climate warming by modelling the regulatory dynamics of flowering-time genes. Nature Communications 4:2303 doi: 10.1038/ncomms3303 |
[157] |
Diggle PK, Mulder CPH. 2019. Diverse Developmental Responses to Warming Temperatures Underlie Changes in Flowering Phenologies. Integrative And Comparative Biology 59:559−70 doi: 10.1093/icb/icz076 |
[158] |
Ma J, Chen X, Han F, Song Y, Zhou B, et al. 2022. The long road to bloom in conifers. Forestry Research 2:16 doi: 10.48130/FR-2022-0016 |
[159] |
Charrier A, Vergne E, Dousset N, Richer A, Petiteau A, Chevreau E. 2019. Efficient targeted mutagenesis in apple and first time edition of pear using the CRISPR-Cas9 system. Frontiers in Plant Science 10:40 doi: 10.3389/fpls.2019.00040 |
[160] |
Flachowsky H, Szankowski I, Waidmann S, Peil A, Trankner C, et al. 2012. The MdTFL1 gene of apple (Malus × domestica Borkh.) reduces vegetative growth and generation time. Tree Physiology 32:1288−301 doi: 10.1093/treephys/tps080 |
[161] |
Mimida N, Kotoda N, Ueda T, Igarashi M, Hatsuyama Y, et al. 2009. Four TFL1/CEN-like genes on distinct linkage groups show different expression patterns to regulate vegetative and reproductive development in apple (Malus × domestica Borkh.). Plant and Cell Physiology 50:394−412 doi: 10.1093/pcp/pcp001 |
[162] |
Flachowsky H, Hättasch C, Höfer M, Peil A, Hanke MV. 2010. Overexpression of LEAFY in apple leads to a columnar phenotype with shorter internodes. Planta 231:251−63 doi: 10.1007/s00425-009-1041-0 |
[163] |
Wada M, Cao Q, Kotoda N, Soejima J, Masuda T. 2002. Apple has two orthologues of FLORICAULA/LEAFY involved in flowering. Plant Molecular Biology 49:567−77 doi: 10.1023/A:1015544207121 |
[164] |
Kagaya H, Ito N, Shibuya T, Komori S, Kato K, Kanayama Y. 2020. Characterization of FLOWERING LOCUS C homologs in apple as a model for fruit trees. International Journal of Molecular Sciences 21:4562 doi: 10.3390/ijms21124562 |
[165] |
Ziv D, Zviran T, Zezak O, Samach A, Irihimovitch V. 2014. Expression profiling of FLOWERING LOCUS T-like gene in alternate bearing 'Hass' avocado trees suggests a role for PaFT in avocado flower induction. PLoS One 9:e110613 doi: 10.1371/journal.pone.0110613 |
[166] |
Song G, Walworth A, Zhao D, Jiang N, Hancock JF. 2013. The Vaccinium corymbosum FLOWERING LOCUS T-like gene (VcFT): a flowering activator reverses photoperiodic and chilling requirements in blueberry. Plant Cell Reports 32:1759−69 doi: 10.1007/s00299-013-1489-z |
[167] |
Pillitteri LJ, Lovatt CJ, Walling LL. 2004. Isolation and characterization of a TERMINAL FLOWER homolog and its correlation with juvenility in citrus. Plant Physiology 135:1540−51 doi: 10.1104/pp.103.036178 |
[168] |
Orbović V, Ravanfar SA, Acanda Y, Narvaez J, Merritt BA, et al. 2021. Stress-inducible Arabidopsis thaliana RD29A promoter constitutively drives Citrus sinensis APETALA1 and LEAFY expression and precocious flowering in transgenic Citrus spp. Transgenic Research 30:687−99 doi: 10.1007/s11248-021-00260-z |
[169] |
Liu X, Zhang J, Abuahmad A, Franks RG, Xie D, et al. 2016. Analysis of two TFL1 homologs of dogwood species (Cornus L.) indicates functional conservation in control of transition to flowering. Planta 243:1129−41 doi: 10.1007/s00425-016-2466-x |
[170] |
Elorriaga E, Klocko AL, Ma C, du Plessis M, An X, et al. 2021. Genetic containment in vegetatively propagated forest trees: CRISPR disruption of LEAFY function in Eucalyptus gives sterile indeterminate inflorescences and normal juvenile development. Plant Biotechnology Journal 19:1743−55 doi: 10.1111/pbi.13588 |
[171] |
Brill EM, Watson JM. 2004. Ectopic expression of a Eucalyptus grandis SVP orthologue alters the flowering time of Arabidopsis thaliana. Functional Plant Biology 31:217 doi: 10.1071/FP03180 |
[172] |
Ikegami H, Nogata H, Inoue Y, Himeno S, Yakushiji H, et al. 2013. Expression of FcFT1, a FLOWERING LOCUS T-like gene, is regulated by light and associated with inflorescence differentiation in fig (Ficus carica L.). BMC Plant Biology 13:216 doi: 10.1186/1471-2229-13-216 |
[173] |
Li C, Chen L, Fan X, Qi W, Ma J, et al. 2020. MawuAP1 promotes flowering and fruit development in the basal angiosperm Magnolia wufengensis (Magnoliaceae). Tree Physiology 40:1247−59 doi: 10.1093/treephys/tpaa057 |
[174] |
Carmona MJ, Calonje M, Martínez-Zapater JM. 2007. The |
[175] |
Esumi T, Kitamura Y, Hagihara C, Yamane H, Tao R. 2010. Identification of a TFL1 ortholog in Japanese apricot (Prunus mume Sieb. et Zucc.). Scientia Horticulturae 125:608−16 doi: 10.1016/j.scienta.2010.05.016 |
[176] |
Tang M, Bai X, Wang J, Chen T, Meng X, et al. 2022. Efficiency of graft-transmitted JcFT for floral induction in woody perennial species of the Jatropha genus depends on transport distance. Tree Physiology 42:189−201 doi: 10.1093/treephys/tpab116 |
[177] |
Bai X, Ke J, Huang P, Fatima I, Cheng T, Tang M. 2022. Promotion of natural flowers by JcFT depends on JcLFY in the perennial woody species Jatropha curcas. Plant Science 318:111236 doi: 10.1016/j.plantsci.2022.111236 |
[178] |
Tang M, Tao Y, Fu Q, Song Y, Niu L, et al. 2016. An ortholog of LEAFY in Jatropha curcas regulates flowering time and floral organ development. Scientific Reports 6:37306 doi: 10.1038/srep37306 |
[179] |
Tang M, Tao Y, Xu Z. 2016. Ectopic expression of Jatropha curcas APETALA1 (JcAP1) caused early flowering in Arabidopsis, but not in Jatropha. PeerJ 4:e1969 doi: 10.7717/peerj.1969 |
[180] |
Li C, Fu Q, Niu L, Luo L, Chen J, Xu Z. 2017. Three TFL1 homologues regulate floral initiation in the biofuel plant Jatropha curcas. Scientific Reports 7:43090 doi: 10.1038/srep43090 |
[181] |
Varkonyi-Gasic E, Moss SMA, Voogd C, Wang T, Putterill J, et al. 2013. Homologs of FT, CEN and FD respond to developmental and environmental signals affecting growth and flowering in the perennial vine kiwifruit. New Phytologist 198:732−46 doi: 10.1111/nph.12162 |
[182] |
Voogd C, Brian LA, Wang T, Allan AC, Varkonyi-Gasic E. 2017. Three FT and multiple CEN and BFT genes regulate maturity, flowering, and vegetative phenology in kiwifruit. Journal of Experimental Botany 68:1539−53 doi: 10.1093/jxb/erx044 |
[183] |
Herath D, Voogd C, Mayo-Smith M, Yang B, Allan AC, et al. 2022. CRISPR-Cas9-mediated mutagenesis of kiwifruit BFT genes results in an evergrowing but not early flowering phenotype. Plant Biotechnology Journal 20:2064−76 doi: 10.1111/pbi.13888 |
[184] |
Wu R, Wang T, McGie T, Voogd C, Allan AC, et al. 2014. Overexpression of the kiwifruit SVP3 gene affects reproductive development and suppresses anthocyanin biosynthesis in petals, but has no effect on vegetative growth, dormancy, or flowering time. Journal of Experimental Botany 65:4985−95 doi: 10.1093/jxb/eru264 |
[185] |
Wu R, Walton EF, Richardson AC, Wood M, Hellens RP, et al. 2012. Conservation and divergence of four kiwifruit SVP-like MADS-box genes suggest distinct roles in kiwifruit bud dormancy and flowering. Journal of Experimental Botany 63:797−807 doi: 10.1093/jxb/err304 |
[186] |
Ding F, Zhang S, Chen H, Su Z, Zhang R, et al. 2015. Promoter difference of LcFT1 is a leading cause of natural variation of flowering timing in different litchi cultivars (Litchi chinensis Sonn.). Plant Science 241:128−37 doi: 10.1016/j.plantsci.2015.10.004 |
[187] |
Zhang J, Liu G, Guo C, He Y, Li Z, et al. 2011. The FLOWERING LOCUS T orthologous gene of Platanus acerifolia is expressed as alternatively spliced forms with distinct spatial and temporal patterns. Plant Biology 13:809−20 doi: 10.1111/j.1438-8677.2010.00432.x |
[188] |
Winterhagen P, Tiyayon P, Samach A, Hegele M, Wunsche JN. 2013. Isolation and characterization of FLOWERING LOCUS T subforms and APETALA1 of the subtropical fruit tree Dimocarpus longan. Plant Physiology and Biochemistry 71:184−90 doi: 10.1016/j.plaphy.2013.07.013 |
[189] |
Jiang Y, Zhu Y, Zhang L, Su W, Peng J, et al. 2020. EjTFL1 genes promote growth but inhibit flower bud differentiation in loquat. Frontiers in Plant Science 11:576 doi: 10.3389/fpls.2020.00576 |
[190] |
Liu Y, Zhao Q, Meng N, Song H, Li C, et al. 2017. Over-expression of EjLFY-1 leads to an early flowering habit in strawberry (Fragaria × ananassa) and its asexual progeny. Frontiers in Plant Science 8:496 doi: 10.3389/fpls.2017.00496 |
[191] |
Gafni I, Rai AC, Halon E, Zviran T, Sisai I, et al. 2022. Expression profiling of four mango FT/TFL1-encoding genes under different fruit load conditions, and their involvement in flowering regulation. Plants 11:2409 doi: 10.3390/plants11182409 |
[192] |
Wang Y, He X, Yu H, Mo X, Fan Y, et al. 2021. Overexpression of four MiTFL1 genes from mango delays the flowering time in transgenic Arabidopsis. BMC Plant Biology 21:407 doi: 10.1186/s12870-021-03199-9 |
[193] |
Klintenäs M, Pin PA, Benlloch R, Ingvarsson PK, Nilsson O. 2012. Analysis of conifer FLOWERING LOCUS T/TERMINAL FLOWER1-like genes provides evidence for dramatic biochemical evolution in the angiosperm FT lineage. New Phytologist 196:1260−73 doi: 10.1111/j.1469-8137.2012.04332.x |
[194] |
Haberman A, Bakhshian O, Cerezo-Medina S, Paltiel J, Adler C, et al. 2017. A possible role for flowering locus T-encoding genes in interpreting environmental and internal cues affecting olive (Olea europaea L.) flower induction. Plant, Cell & Environment 40:1263−80 doi: 10.1111/pce.12922 |
[195] |
Chen Y, Jiang P, Thammannagowda S, Liang H, Wilde HD. 2013. Characterization of peach TFL1 and comparison with FT/TFL1 gene families of the rosaceae. Journal of the American Society for Horticultural Science 138:12−7 doi: 10.21273/JASHS.138.1.12 |
[196] |
Cai Y, Wang L, Ogutu CO, Yang Q, Luo B, et al. 2021. The MADS-box gene PpPI is a key regulator of the double-flower trait in peach. Physiologia Plantarum 173:2119−29 doi: 10.1111/ppl.13561 |
[197] |
Zhang X, An L, Nguyen TH, Liang H, Wang R, et al. 2015. The cloning and functional characterization of peach CONSTANS and FLOWERING LOCUS T homologous genes PpCO and PpFT. PLoS One 10:e0124108 doi: 10.1371/journal.pone.0124108 |
[198] |
Freiman A, Golobovitch S, Yablovitz Z, Belausov E, Dahan Y, et al. 2015. Expression of flowering locus T2 transgene from Pyrus communis L. delays dormancy and leaf senescence in Malus × domestica Borkh, and causes early flowering in tobacco. Plant Science 241:164−76 doi: 10.1016/j.plantsci.2015.09.012 |
[199] |
Patil HB, Chaurasia AK, Azeez A, Krishna B, Subramaniam VR, et al. 2018. Characterization of two TERMINAL FLOWER1 homologs PgTFL1 and PgCENa from pomegranate (Punica granatum L.). Tree Physiol 38:772−84 doi: 10.1093/treephys/tpx154 |
[200] |
Azeez A, Miskolczi P, Tylewicz S, Bhalerao RP. 2014. A tree ortholog of APETALA1 mediates photoperiodic control of seasonal growth. Current Biology 24:717−24 doi: 10.1016/j.cub.2014.02.037 |
[201] |
Bi Z, Li X, Huang H, Hua Y. 2016. Identification, functional study, and promoter analysis of HbMFT1, a homolog of MFT from rubber tree (Hevea brasiliensis). International Journal of Molecular Sciences 17:247 doi: 10.3390/ijms17030247 |
[202] |
Yarur A, Soto E, León G, Almeida AM. 2016. The sweet cherry (Prunus avium) FLOWERING LOCUS T gene is expressed during floral bud determination and can promote flowering in a winter-annual Arabidopsis accession. Plant Reproduction 29:311−22 doi: 10.1007/s00497-016-0296-4 |
[203] |
Wang J, Jiu S, Xu Y, Sabir IA, Wang L, et al. 2021. SVP-like gene PavSVP potentially suppressing flowering with PavSEP, PavAP1, and PavJONITLESS in sweet cherries (Prunus avium L.). Plant Physiology and Biochemistry 159:277−84 doi: 10.1016/j.plaphy.2020.12.013 |
[204] |
Wang J, Zhang X, Yan G, Zhou Y, Zhang K. 2013. Over-expression of the PaAP1 gene from sweet cherry (Prunus avium L.) causes early flowering in Arabidopsis thaliana. Journal of Plant Physiology 170:315−20 doi: 10.1016/j.jplph.2012.09.015 |
[205] |
Lei H, Su S, Ma L, Wen Y, Wang X. 2017. Molecular cloning and functional characterization of CoFT1, a homolog of FLOWERING LOCUS T (FT) from Camellia oleifera. Gene 626:215−26 doi: 10.1016/j.gene.2017.05.044 |
[206] |
Velázquez K, Agüero J, Vives MC, Aleza P, Pina JA, et al. 2016. Precocious flowering of juvenile citrus induced by a viral vector based on Citrus leaf blotch virus: a new tool for genetics and breeding. Plant Biotechnology Journal 14:1976−85 doi: 10.1111/pbi.12555 |