[1]

Nour M, Lutze SA, Grech A, Allman-Farinelli M. 2018. The relationship between vegetable intake and weight outcomes: A systematic review of cohort studies. Nutrients 10:1626

doi: 10.3390/nu10111626
[2]

Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K. 2011. Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biology 11:163

doi: 10.1186/1471-2229-11-163
[3]

Genre A, Lanfranco L, Perotto S, Bonfante P. 2020. Unique and common traits in mycorrhizal symbioses. Nature Reviews Microbiology 18:649−60

doi: 10.1038/s41579-020-0402-3
[4]

Chen M, Arato M, Borghi L, Nouri E, Reinhardt D. 2018. Beneficial services of arbuscular mycorrhizal fungi – from ecology to application. Frontiers in Plant Science 9:1270

doi: 10.3389/fpls.2018.01270
[5]

Malhi GS, Kaur M, Kaushik P, Alyemeni MN, Alsahli AA, et al. 2021. Arbuscular mycorrhiza in combating abiotic stresses in vegetables: An eco-friendly approach. Saudi Journal of Biological Sciences 28:1465−76

doi: 10.1016/j.sjbs.2020.12.001
[6]

Baylis GTS. 1967. Experiments on the ecological significance of phycomycetous mycorrhizas. New Phytologist 66:231−43

doi: 10.1111/j.1469-8137.1967.tb06001.x
[7]

Mosse, B. 1973. Plant growth responses to vesicular-arbuscular mycorrhiza. New Phytologist 72:127−36

doi: 10.1111/j.1469-8137.1973.tb02017.x
[8]

Menge JA, Steirle D, Bagyaraj DJ, Johnson ELV, Leonard RT. 1978. Phosphorus Concentrations in Plants Responsible for Inhibition of Mycorrhizal Infection. New Phytologist 80:575−78

doi: 10.1111/j.1469-8137.1978.tb01589.x
[9]

Jasper DA, Robson AD, Abbott LK. 1979. Phosphorus and the formation of vesicular-arbuscular mycorrhizas. Soil Biology & Biochemistry 11:501−5

doi: 10.1016/0038-0717(79)90009-9
[10]

Thomson BD, Robson AD, Abbott LK. 1986. Effects of Phosphorus on the Formation of Mycorrhizas By Gigaspora Calospora and Glomus Fasciculatum in Relation to Root Carbohydrates. New Phytologist 103:751−65

doi: 10.1111/j.1469-8137.1986.tb00850.x
[11]

Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, et al. 2010. Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. The Plant Journal 64:1002−17

doi: 10.1111/j.1365-313X.2010.04385.x
[12]

Balzergue C, Puech-Pagès V, Bécard G, Rochange SF. 2011. The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. Journal of Experimental Botany 62:1049−60

doi: 10.1093/jxb/erq335
[13]

Kobae Y, Ohmori Y, Saito C, Yano K, Ohtomo R, et al. 2016. Phosphate Treatment Strongly Inhibits New Arbuscule Development But Not the Maintenance of Arbuscule in Mycorrhizal Rice Roots. Plant Physiology 171:566−79

doi: 10.1104/pp.16.00127
[14]

Li X, George E, Marschner H. 1991. Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant and Soil 136:41−48

doi: 10.1007/BF02465218
[15]

Jakobsen I, Abbott LK, Robson AD. 1992. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. New Phytologist 120:371−80

doi: 10.1111/j.1469-8137.1992.tb01077.x
[16]

Golubkina N, Krivenkov L, Sekara A, Vasileva V, Tallarita A, et al. 2020. Prospects of arbuscular mycorrhizal fungi utilization in production of Allium plants. Plants 9:279

doi: 10.3390/plants9020279
[17]

Galván GA, Kuyper TW, Burger K, Keizer LCP, Hoekstra RF, et al. 2011. Genetic analysis of the interaction between Allium species and arbuscular mycorrhizal fungi. Theoretical and Applied Genetics 122:947−60

doi: 10.1007/s00122-010-1501-8
[18]

Metwally RA, Al-Amri SM. 2020. Individual and interactive role of Trichoderma viride and arbuscular mycorrhizal fungi on growth and pigment content of onion plants. Letters in Applied Microbiology 70:79−86

doi: 10.1111/lam.13246
[19]

Rozpądek P, Rąpała-Kozik M, Wężowicz K, Grandin A, Karlsson S, et al. 2016. Arbuscular mycorrhiza improves yield and nutritional properties of onion (Allium cepa). Plant Physiology & Biochemistry 107:264−72

doi: 10.1016/j.plaphy.2016.06.006
[20]

Tran BTT, Watts-Williams SJ, Cavagnaro TR. 2019. Impact of an arbuscular mycorrhizal fungus on the growth and nutrition of fifteen crop and pasture plant species. Functional Plant Biology 46:732−42

doi: 10.1071/FP18327
[21]

Baum C, El-Tohamy W, Gruda N. 2015. Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: A review. Scientia Horticulturae 187:131−41

doi: 10.1016/j.scienta.2015.03.002
[22]

Hijri M. 2016. Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield. Mycorrhiza 26:209−14

doi: 10.1007/s00572-015-0661-4
[23]

Bona E, Cantamessa S, Massa N, Manassero P, Marsano F, et al. 2017. Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza 27:1−11

doi: 10.1007/s00572-016-0727-y
[24]

Schubert R, Werner S, Cirka H, Rödel P, Tandron Moya Y, et al. 2020. Effects of arbuscular mycorrhization on fruit quality in industrialized tomato production. International Journal of Molecular Sciences 21:7029

doi: 10.3390/ijms21197029
[25]

Pasković I, Soldo B, Goreta Ban S, Radić T, Lukić M, et al. 2021. Fruit quality and volatile compound composition of processing tomato as affected by fertilisation practices and arbuscular mycorrhizal fungi application. Food Chemistry 359:129961

doi: 10.1016/j.foodchem.2021.129961
[26]

Wang W, Vinocur B, Altman A. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1−14

doi: 10.1007/s00425-003-1105-5
[27]

Balliu A, Sallaku G, Rewald B. 2015. AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability 7:15967−81

doi: 10.3390/su71215799
[28]

Neeraj, Singh K. 2011. Organic amendments to soil inoculated arbuscular mycorrhizal fungi and Pseudomonas fluorescens treatments reduce the development of root-rot disease and enhance the yield of Phaseolus vulgaris L. European Journal of Soil Biology 47:288−95

doi: 10.1016/j.ejsobi.2011.07.002
[29]

Ozgonen H, Erkilic A. 2007. Growth enhancement and Phytophthora blight (Phytophthora capsici Leonian) control by arbuscular mycorrhizal fungal inoculation in pepper. Crop Protection 26:1682−88

doi: 10.1016/j.cropro.2007.02.010
[30]

Liu J, You L, Amini M, Obersteiner M, Herrero M, et al. 2010. A high-resolution assessment on global nitrogen flows in cropland. PNAS 107:8035−40

doi: 10.1073/pnas.0913658107
[31]

Bender SF, Conen F, Van D. 2015. Mycorrhizal effects on nutrient cycling, nutrient leaching and N2O production in experimental grassland. Soil Biology and Biochemistry 80:283−92

doi: 10.1016/j.soilbio.2014.10.016
[32]

Cavagnaro TR, Barrios-Masias FH, Jackson LE. 2012. Arbuscular mycorrhizas and their role in plant growth, nitrogen interception and soil gas efflux in an organic production system. Plant & Soil 353:181−94

doi: 10.1007/s11104-011-1021-6
[33]

Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S. 2014. Nitrous oxide emissions from soils: how well do we understand the processes and their controls. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences 368:20130122

doi: 10.1098/rstb.2013.0122
[34]

Lazcano C, Barrios-Masias FH, Jackson LE. 2014. Arbuscular mycorrhizal effects on plant water relations and soil greenhouse gas emissions under changing moisture regimes. Soil Biology & Biochemistry 74:184−92

doi: 10.1016/j.soilbio.2014.03.010
[35]

Bowles TM, Jackson LE, Cavagnaro TR. 2018. Mycorrhizal fungi enhance plant nutrient acquisition and modulate nitrogen loss with variable water regimes. Global Change Biology 24:e171−e182

doi: 10.1111/gcb.13884
[36]

Riaz M, Kamran M, Fang Y, Wang Q, Cao H, et al. 2020. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. Journal of Hazardous Materials 402:123919

doi: 10.1016/j.jhazmat.2020.123919
[37]

Garg N, Chandel S. 2015. Role of arbuscular mycorrhiza in arresting reactive oxygen species (ROS) and strengthening antioxidant defense in Cajanus cajan (L.) Millsp. nodules under salinity (NaCl) and cadmium (Cd) stress. Plant Growth Regulation 75:521−34

doi: 10.1007/s10725-014-0016-8
[38]

Akiyama K, Matsuzaki K, Hayashi H. 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824−27

doi: 10.1038/nature03608
[39]

Arumingtyas EL, Floyd RS, Gregory MJ, Murfet IC. 1992. Branching in Pisum: inheritance and allelism tests with 17 ramosus mutants. Pisum Genetics 24:17−31

[40]

Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, et al. 2008. Strigolactone inhibition of shoot branching. Nature 455:189−94

doi: 10.1038/nature07271
[41]

Foo E, Yoneyama K, Hugill CJ, Quittenden LJ, Reid JB. 2013. Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency. Molecular Plant 6:76−87

doi: 10.1093/mp/sss115
[42]

de Saint Germain A, Clavé G, Badet-Denisot MA, Pillot JP, Cornu D, et al. 2016. An histidine covalent receptor and butenolide complex mediates strigolactone perception. Nature Chemical Biology 12:787−94

doi: 10.1038/nchembio.2147
[43]

Ligerot Y, de Saint Germain A, Waldie T, Troadec C, Citerne S, et al. 2017. The pea branching RMS2 gene encodes the PsAFB4/5 auxin receptor and is involved in an auxin-strigolactone regulation loop. Plos Genetics 13:e1007089

doi: 10.1371/journal.pgen.1007089
[44]

Kohlen W, Charnikhova T, Lammers M, Pollina T, Tóth P, et al. 2012. The tomato CAROTENOID CLEAVAGE DIOXYGENASE8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytologist 196:535−47

doi: 10.1111/j.1469-8137.2012.04265.x
[45]

Guillotin B, Etemadi M, Audran C, Bouzayen M, Bécard G, et al. 2017. Sl-IAA27 regulates strigolactone biosynthesis and mycorrhization in tomato (var. MicroTom). New Phytologist 213:1124−32

doi: 10.1111/nph.14246
[46]

Foo E, Ross JJ, Jones WT, et al. 2013. Plant hormones in arbuscular mycorrhizal symbioses: An emerging role for gibberellins. Annals of Botany 111:769−79

doi: 10.1093/aob/mct041
[47]

Choi J, Summers W, Paszkowski U. 2018. Mechanisms underlying establishment of arbuscular mycorrhizal symbioses. Annual Review of Phytopathology 56:135−60

doi: 10.1146/annurev-phyto-080516-035521
[48]

Buendia L, Wang T, Girardin A, Lefebvre B. 2016. The LysM receptor-like kinase SlLYK10 regulates the arbuscular mycorrhizal symbiosis in tomato. New Phytologist 210:184−95

doi: 10.1111/nph.13753
[49]

Liao D, Sun X, Wang N, Song F, Liang Y. 2018. Tomato LysM Receptor-Like Kinase SlLYK12 Is Involved in Arbuscular Mycorrhizal Symbiosis. Frontiers in Plant Science 9:1004

doi: 10.3389/fpls.2018.01004
[50]

Girardin A, Wang T, Ding Y, Keller J, Buendia L, et al. 2019. LCO Receptors Involved in Arbuscular Mycorrhiza Are Functional for Rhizobia Perception in Legumes. Current Biology 29:4249−4259E5

doi: 10.1016/j.cub.2019.11.038
[51]

Prihatna C, Larkan NJ, Barbetti MJ, Barker SJ. 2018. Tomato CYCLOPS/IPD3 is required for mycorrhizal symbiosis but not tolerance to Fusarium wilt in mycorrhiza-deficient tomato mutant rmc. Mycorrhiza 28:495−507

doi: 10.1007/s00572-018-0842-z
[52]

Indrasumunar A, Wilde J, Hayashi S, Li D, Gresshoff PM. 2015. Functional analysis of duplicated Symbiosis Receptor Kinase (SymRK) genes during nodulation and mycorrhizal infection in soybean (Glycine max). Journal of Plant Physiology 176:157−68

doi: 10.1016/j.jplph.2015.01.002
[53]

Arthikala MK, Montiel J, Nava N, Santana O, Sánchez-López R, et al. 2013. PvRbohB negatively regulates Rhizophagus irregularis colonization in Phaseolus vulgaris. Plant & Cell Physiology 54:1391−402

doi: 10.1093/pcp/pct089
[54]

Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht M, et al. 2005. The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. The Plant Journal 42:236−50

doi: 10.1111/j.1365-313X.2005.02364.x
[55]

Kobae Y, Tamura Y, Takai S, Banba M, Hata S. 2010. Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean. Plant and Cell Physiology 51:1411−15

doi: 10.1093/pcp/pcq099
[56]

Liu J, Liu J, Liu J, Cui M, Huang Y, et al. 2019. The Potassium Transporter SlHAK10 Is Involved in Mycorrhizal Potassium Uptake. Plant Physiology 180:465−79

doi: 10.1104/pp.18.01533
[57]

Liu J, Chen J, Xie K, Tian Y, Yan A, et al. 2020. A mycorrhiza-specific H+-ATPase is essential for arbuscule development and symbiotic phosphate and nitrogen uptake. Plant, Cell & Environment 43:1069−83

doi: 10.1111/pce.13714
[58]

Pimprikar P, Carbonnel S, Paries M, Katzer K, Klingl V, et al. 2016. A CCaMK-CYCLOPS-DELLA Complex Activates Transcription of RAM1 to Regulate Arbuscule Branching. Current Biology 26:987−98

doi: 10.1016/j.cub.2016.01.069
[59]

Ho-Plágaro T, Morcillo RJL, Tamayo-Navarrete MI, Huertas R, Molinero-Rosales N, et al. 2021. DLK2 regulates arbuscule hyphal branching during arbuscular mycorrhizal symbiosis. New Phytologist 229:548−62

doi: 10.1111/nph.16938
[60]

Ho-Plágaro T, Molinero-Rosales N, Fariña Flores D, Villena Díaz M, García-Garrido JM. 2019. Identification and expression analysis of GRAS transcription factor genes involved in the control of arbuscular mycorrhizal development in tomato. Frontiers in Plant Science 10:268

doi: 10.3389/fpls.2019.00268
[61]

Ho-Plágaro T, Huertas RL, Tamayo-Navarrete MI, Blancaflor E, Gavara N, et al. 2021. A novel putative microtubule-associated protein is involved in arbuscule development during arbuscular mycorrhiza formation. Plant and Cell Physiology 62:306−20

doi: 10.1093/pcp/pcaa159
[62]

Floss DS, Gomez SK, Park HJ, MacLean AM, Müller LM, et al. 2017. A transcriptional program for arbuscule degeneration during AM symbiosis is regulated by MYB1. Current Biology 27:1206−12

doi: 10.1016/j.cub.2017.03.003
[63]

Li C, Zhou J, Wang X, Liao H. 2019. A purple acid phosphatase, GmPAP33, participates in arbuscule degeneration during arbuscular mycorrhizal symbiosis in soybean. Plant, Cell & Environment 42:2015−27

doi: 10.1111/pce.13530
[64]

Liu Y, Shi G, Mao L, Cheng G, Jiang S, et al. 2012. Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem. New Phytologist 194:523−35

doi: 10.1111/j.1469-8137.2012.04050.x
[65]

Bonneau L, Huguet S, Wipf D, Pauly N, Truong HN. 2013. Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. New Phytologist 199:188−202

doi: 10.1111/nph.12234
[66]

Corrêa A, Cruz C, Pérez-Tienda J, Ferrol N. 2014. Shedding light onto nutrient responses of arbuscular mycorrhizal plants: nutrient interactions may lead to unpredicted outcomes of the symbiosis. Plant Science 221−222:29−41

doi: 10.1016/j.plantsci.2014.01.009
[67]

Nouri E, Breuillin-Sessoms F, Feller U, Reinhardt D. 2014. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PLoS One 9:e90841

doi: 10.1371/journal.pone.0090841
[68]

Wang C, Velandia K, Kwon CT, Wulf KE, Nichols DS, et al. 2021. The role of CLAVATA signalling in the negative regulation of mycorrhizal colonization and nitrogen response of tomato. Journal of Experimental Botany 72:1702−13

doi: 10.1093/jxb/eraa539
[69]

Liao D, Sun C, Liang H, Wang Y, Bian X, et al. 2022. SlSPX1-SlPHRs medicate the suppression of arbuscular mycorrhizal symbiosis by phosphate repletion in tomato. The Plant Cell 34:4045−65

doi: 10.1093/plcell/koac212
[70]

Zhou Y, Ge S, Jin L, Yao K, Wang Y, et al. 2019. A novel CO2-responsive systemic signaling pathway controlling plant mycorrhizal symbiosis. New Phytologist 224:106−16

doi: 10.1111/nph.15917
[71]

Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. 2020. Plant-microbiome interactions: from community assembly to plant health. Nature Reviews Microbiology 18:607−21

doi: 10.1038/s41579-020-0412-1
[72]

Thiergart T, Zgadzaj R, Bozsóki Z, Garrido-Oter R, Radutoiu S, et al. 2019. Lotus japonicus symbiosis genes impact microbial interactions between symbionts and multikingdom commensal communities. mBio 10:e01833−19

doi: 10.1128/mbio.01833-19
[73]

Wang X, Feng H, Wang Y, Wang M, Xie X, et al. 2021. Mycorrhizal symbiosis modulates the rhizosphere microbiota to promote rhizobia-legume symbiosis. Molecular Plant 14:503−16

doi: 10.1016/j.molp.2020.12.002
[74]

Santos-Medellín C, Liechty Z, Edwards J, Nguyen B, Huang B, et al. 2021. Prolonged drought imparts lasting compositional changes to the rice root microbiome. Nature Plants 7:1065−77

doi: 10.1038/s41477-021-00967-1
[75]

Huang R, Li Z, Mao C, Zhang H, Sun Z, et al. 2020. Natural variation at OsCERK1 regulates arbuscular mycorrhizal symbiosis in rice. New Phytologist 225:1762−76

doi: 10.1111/nph.16158
[76]

Lu Y, Wang J, Chen B, Mo S, Lian L, et al. 2021. A donor-DNA-free CRISPR/Cas-based approach to gene knock-up in rice. Nature Plants 7:1445−52

doi: 10.1038/s41477-021-01019-4
[77]

Oehl F, Sieverding E, Palenzuela J, Ineichen K, Alves da Silva G. 2011. Advances in Glomeromycota taxonomy and classification. IMA Fungus 2:191−9

doi: 10.5598/imafungus.2011.02.02.10
[78]

Redecker D, Schüssler A, Stockinger H, Stürmer SL, Morton JB, et al. 2013. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515−31

doi: 10.1007/s00572-013-0486-y