[1]

Yu F. 1986. Discussion on the originating place and the originating center of tea plant. Journal of Tea Science 6:1−8

[2]

Zhu Y, Jiang A. 2010. Comparation on the development of coffee, cocoa, and tea of the world. Journal of Tea Science 30:493−500

doi: 10.13305/j.cnki.jts.2010.06.016
[3]

Kumari M, Thakur S, Kumar A, Joshi R, Kumar P, et al. 2019. Regulation of color transition in purple tea (Camellia sinensis). Planta 251:35

doi: 10.1007/s00425-019-03328-7
[4]

Shen J, Zou Z, Zhang X, Zhou L, Wang Y, et al. 2018. Metabolic analyses reveal different mechanisms of leaf color change in two purple-leaf tea plant (Camellia sinensis L.) cultivars. Horticulture Research 5:7

doi: 10.1038/s41438-017-0010-1
[5]

Yang N, Jia X, Zhang Z, Sun E, Yan H. 2015. Advance in studies on anti-cancer activity and mechanism of flavonoids. Chinese Journal of Traditional Chinese Medicine 40:373−81

[6]

Li M, Zhou Y, Du G, Qin X. 2019. Research progress about the anti-aging effect and mechanism of flavonoids from traditional Chinese medicine. Journal of Pharmacy 54:1382−91

[7]

Qi J, Dong F. 2020. Research progress of the pharmacological action of flavonoids. Journal of Beijing Union University 34:89−92

[8]

Fang F, Wang F. 2018. Research progress on the extraction methods of flavonols in plants. Food industry Science and Technology 39:323−328+334

[9]

Feng Y, Wang X. 2021. Review on the research of flavonoids. Jiangxi Chemical Tndustry 37:102−4

[10]

Zhu Z, Lu Y. 2016. Plant color mutants and the anthocyanin pathway. Bulletin of Botany 51:107−19

doi: 10.11983/CBB15059
[11]

Hong Y, Wu Y, Song X, Li M, Dai S. 2021. Molecular mechanism of light-induced anthocyanin biosynthesis in horticultural crops. Acta Horticulturae Sinica 48:1983−2000

[12]

He X. 2021. Identification and analysis of anthocyanin galactosyltransferase from tea plant [Camellia sinensis (L.) O. Kuntze]. Master's Thesis. Northwest A&F University, China. pp. 29−42

[13]

Wang W, Wang Y, Li H, Liu Z, Cui X, et al. 2018. Two MYB transcription factors (CsMYB2 and CsMYB26) are involved in flavonoid biosynthesis in tea plant [Camellia sinensis (L.) O. Kuntze]. BMC Plant Biology 18:288

doi: 10.1186/s12870-018-1502-3
[14]

Liu X, Feng C, Zhang M, Yin X, Xu C, et al. 2013. The MrWD40-1 gene of Chinese bayberry (Myrica rubra) interacts with MYB and bHLH to enhance anthocyanin accumulation. Plant Molecular Biology Reporter 31:1474−84

doi: 10.1007/s11105-013-0621-0
[15]

Chen X, Wang P, Zheng Y, Gu M, Lin X, et al. 2020. Comparison of metabolome and transcriptome of flavonoid biosynthesis pathway in a purple-leaf tea germplasm Jinmingzao and a green-leaf tea germplasm Huangdan reveals their relationship with genetic mechanisms of color formation. International Journal of Molecular Sciences 21:4167

doi: 10.3390/ijms21114167
[16]

Ni Y, Chen H, Liu D, Zeng L, Chen P, et al. 2021. Discovery of genes involved in anthocyanin biosynthesis from the rind and pith of three sugarcane varieties using integrated metabolic profiling and RNA-seq analysis. BMC Plant Biology 21:214

doi: 10.1186/s12870-021-02986-8
[17]

Cai J, Lv L, Zeng X, Zhang F, Chen Y, et al. 2022. Integrative analysis of metabolomics and transcriptomics reveals molecular mechanisms of anthocyanin metabolism in the Zikui Tea Plant (Camellia sinensis cv. Zikui). International Journal of Molecular Sciences 23:4780

doi: 10.3390/ijms23094780
[18]

Wang L, Lin Q, Song Z, Chen L. 2021. Spectrophotometric determination of total flavonoids in tea. Acta Tea Sinica 62:1−6

doi: 10.3969/j.issn.1007-4872.2021.01.002
[19]

Wang J, Wang J, Xu J, Zheng G, Zhou W. 2019. Advance on detection of anthocyanins in tea and improvement of spectrophotometry. China Tea Processing 26:59−62+69

[20]

Jiang L, Schlesinger F, Davis CA, Zhang Y, Li R, et al. 2011. Synthetic spike-in standards for RNA-seq experiments. Genome Research 21:1543−51

doi: 10.1101/gr.121095.111
[21]

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29:644−52

doi: 10.1038/nbt.1883
[22]

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210−12

doi: 10.1093/bioinformatics/btv351
[23]

Jin J, Tian F, Yang D, Meng Y, Kong L, et al. 2017. Plant TFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Research 45:D1040−D1045

doi: 10.1093/nar/gkw982
[24]

Zhao H, Shi X, Shen C, Chen C, Qu C, et al. 2017. Comparative analysis of miRNA expression profiles provides insight into regulation of biosynthesis of flavonoids and terpenoids between two varieties of Toona sinensis sprouts. Journal of Plant Biology 65:291−310

doi: 10.1007/s12374-021-09321-6
[25]

Liu X, Li F, Song Q, Niu S, Lv L. 2021. Analysis of gene expression related to anthocyanin regulation of 'P113' purple strain of Camellia tachangensis F. C. Zhang in different seasons. Journal of Tea Science 41:789−801

[26]

Liu W, Deng C, Chen X, Lu Y, Liao D. 2021. Determination of free amino acid and volatile aromatic compound inCamellia tachangensis. Journal of Zhejiang Forestry Science and Technology 41:1−14

[27]

Winkel-Shirley B. 2001. Flavonoid Biosynthesis: A Colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology 126:485−93

doi: 10.1104/pp.126.2.485
[28]

Zhang K, Su H, Lin Y, Zhang L. 2022. Research progress on the mechanism of color generation and anthocyanin accumulation in anthocyanin-rich tea. Journal of Food Safety and Quality 13:3585−92

[29]

Karageorgou P, Manetas Y. 2006. The importance of being red when young: anthocyanins and the protection of young leaves of Quercus coccifera from insect herbivory and excess light. Tree Physiology 26:613−21

doi: 10.1093/treephys/26.5.613
[30]

Li H, Lv Q, Ma C, Qu J, Cai F, et al. 2019. Metabolite profiling and transcriptome analyses provide insights into the flavonoid biosynthesis in the developing seed of tartary buckwheat (Fagopyrum tataricum). Journal of Agricultural and Food Chemistry 67:11262−76

doi: 10.1021/acs.jafc.9b03135
[31]

Wang S, Huang S, Yang J, Li Z, Zhang M, et al. 2021. Metabolite profiling of violet, white and pink flowers revealing flavonoids composition patterns in Rhododendron pulchrum Sweet. Journal of Biosciences 46:1

doi: 10.1007/s12038-020-00119-1
[32]

Xia Y, Chen W, Xiang W, Wang D, Xue B, et al. 2021. Integrated metabolic profiling and transcriptome analysis of pigment accumulation in Lonicera japonica flower petals during colour-transition. BMC Plant Biology 21:98

doi: 10.1186/s12870-021-02877-y
[33]

Zhang Q, Yang W, Liu J, Liu H, Lv Z, et al. 2021. Postharvest UV-C irradiation increased the flavonoids and anthocyanins accumulation, phenylpropanoid pathway gene expression, and antioxidant activity in sweet cherries (Prunus avium L.). Postharvest Biology and Technology 175:111490

doi: 10.1016/j.postharvbio.2021.111490
[34]

Li Y, Chen Q, Xie X, Cai Y, Li J, et al. 2020. Integrated metabolomics and transcriptomics analyses reveal the molecular mechanisms underlying the accumulation of anthocyanins and other flavonoids in powpea pod (Vigna unguiculata L.). Journal of Agricultural and Food Chemistry 68:9260−75

doi: 10.1021/acs.jafc.0c01851
[35]

Mei Y, Xie H, Liu S, Zhu J, Zhao S, et al. 2020. Metabolites and transcriptional profiling analysis reveal the molecular mechanisms of the anthocyanin metabolism in the "Zijuan" tea plant (Camellia sinensis var. assamica). Journal of Agricultural and Food Chemistry 69:414−27

doi: 10.1021/acs.jafc.0c06439
[36]

Shi Q, Du J, Zhu D, Li X, Li X. 2020. Metabolomic and transcriptomic analyses of anthocyanin biosynthesis mechanisms in the color mutant Ziziphus jujuba cv. Tailihong. Journal of Agricultural and Food Chemistry 68:15186−98

doi: 10.1021/acs.jafc.0c05334
[37]

Qiu W, Su W, Cai Z, Dong L, Li C, et al. 2020. Combined analysis of transcriptome and metabolome reveals the potential mechanism of coloration and fruit quality in yellow and purple Passiflora edulis Sims. Journal of Agricultural and Food Chemistry 68:12096−106

doi: 10.1021/acs.jafc.0c03619
[38]

Jiang H, Sun Y, Li M, Dai W, Song W, et al. 2018. Anthocyanin accumulation and expression of synthesis-related genes in leaves of different developmental stages in Camellia sinensis cv. Zijuan. Journal of Tea Science 38:174−82

[39]

Yang J, Zhang X, Peng M, Jia G, He H. 2018. Cloning and expression analysis of MYB12 in Lilium oriental hybrid 'Sorbonne'. Plant Science Journal 36:812−816+818−823+817

[40]

Pathak J, Chettry U, Chrungoo NK, Gurung AB. 2022. RNA-Seq analysis reveals the role of MYB12, MYB111 and MBW complex repressors in regulation of flavonoid biosynthesis in stigmas of saffron (Crocus sativus L.) flowers. Acta Physiologiae Plantarum 44:42

doi: 10.1007/s11738-022-03371-0
[41]

Chen X, Wang P, Gu M, Lin X, Hou B, et al. 2021. R2R3-MYB transcription factor family in tea plant (Camellia sinensis): Genome-wide characterization, phylogeny, chromosome location, structure and expression patterns. Genomics 113:1565−1578

doi: 10.1016/j.ygeno.2021.03.033
[42]

Xie L, Ren C, Zhang B, Xu C, Li X. 2019. Plant UDP-glycosyltransferases in Flavonoids Biosynthesis. Acta Horticulturae Sinica 46:1655−69

[43]

Kim BG, Sung SH, Ahn JH. 2012. Biological synthesis of quercetin 3-O-N-acetylglucosamine conjugate using engineered Escherichia coli expressing UGT78D2. Applied Microbiology and Biotechnology 93:2447−53

doi: 10.1007/s00253-011-3747-8
[44]

Lee Y, Yoon HR, Paik YS, Liu JR, Chung W, et al. 2005. Reciprocal regulation of arabidopsis UGT78D2 and BANYULS is critical for regulation of the metabolic flux of anthocyanidins to condensed tannins in developing seed coats. Journal of Plant Biology 48:356−70

doi: 10.1007/BF03030577
[45]

Kim BG. 2011. Characterization of hydroxycinnamoyl-coenzyme a shikimate hydroxycinnamoyltransferase from Populus euramericana. Journal of the Korean Society for Applied Biological Chemistry 54:817−21

doi: 10.1007/BF03253167