[1] |
More TT, Yan S, Tyagi RD, Surampalli RY. 2010. Potential use of filamentous fungi for wastewater sludge treatment. Bioresource Technology 101:7691−700 doi: 10.1016/j.biortech.2010.05.033 |
[2] |
Leitão AL. 2009. Potential of Penicillium species in the bioremediation field. International Journal of Environmental Research and Public Health 6:6 doi: 10.3390/ijerph6041393 |
[3] |
Harms H, Schlosser D, Wick LY. 2011. Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nature Reviews Microbiology 9:177−92 doi: 10.1038/nrmicro2519 |
[4] |
Durruty I, González JF, Wolski EA. 2018. Scaling up and kinetic model validation of Direct Black 22 degradation by immobilized Penicillium chrysogenum. Water Science & Technology 77:17−26 doi: 10.2166/wst.2017.514 |
[5] |
Saroj S, Kumar K, Pareek N, Prasad R, Singh RP. 2014. Biodegradation of azo dyes Acid Red 183, Direct Blue 15 and Direct Red 75 by the isolate Penicillium oxalicum SAR-3. Chemosphere 107:240−48 doi: 10.1016/j.chemosphere.2013.12.049 |
[6] |
Durruty I, Fasce D, González JF, Wolski EA. 2015. A kinetic study of textile dyeing wastewater degradation by Penicillium chrysogenum. Bioprocess and Biosystems Engineering 38:1019−31 doi: 10.1007/s00449-014-1344-9 |
[7] |
Aranciaga N, Durruty I, González JF, Wolski EA. 2012. Aerobic biotransformation of 2,4,6-trichlorophenol by Penicillium chrysogenum in aqueous batch culture: Degradation and residual phytotoxicity. Water SA 38:683−88 doi: 10.4314/wsa.v38i5.5 |
[8] |
Wolski EA, Barrera V, Castellari C, González JF. 2012. Biodegradation of phenol in static cultures by Penicillium chrysogenum ERK1: Catalytic abilities and residual phytotoxicity. Revista Argentina de Microbiología 44:113−21 |
[9] |
Levinskaitė L. 2018. Biodegradation potential of fungi Penicillium isolated from synthetic polymeric materials. Journal of Environmental Engineering 144:06018002 doi: 10.1061/(asce)ee.1943-7870.0001391 |
[10] |
Olicón-Hernández DR, Camacho-Morales RL, Pozo C, González-López J, Aranda E. 2019. Evaluation of diclofenac biodegradation by the ascomycete fungus Penicillium oxalicum at flask and bench bioreactor scales. Science of The Total Environment 662:607−14 doi: 10.1016/j.scitotenv.2019.01.248 |
[11] |
Costa MF, de Oliveira AM, de Oliveira Junior EN. 2020. Biodegradation of linear alkylbenzene sulfonate (LAS) by Penicillium chrysogenum. Bioresource Technology Reports 9:100363 doi: 10.1016/j.biteb.2019.100363 |
[12] |
Li Y, Fu L, Li X, Wang Y, Wei Y, et al. 2021. Novel strains with superior degrading efficiency for lincomycin manufacturing biowaste. Ecotoxicology and Environmental Safety 209:111802 doi: 10.1016/j.ecoenv.2020.111802 |
[13] |
Frisvad JC, Samson RA. 2004. Polyphasic taxonomy of Penicillium subgenus Penicillium: A guide to identification of food and air-borne terverticillate Penicillia and their mycotoxins. Studies in Mycology 49:1−173 |
[14] |
Rabha J, Jha DK. 2018. Metabolic Diversity of Penicillium. In New and Future Developments in Microbial Biotechnology and Bioengineering, eds. Gupta VK, Rodriguez-Couto S. Amsterdam, Netherlands: Elsevier. pp 217–34. https://doi.org/10.1016/B978-0-444-63501-3.00012-0 |
[15] |
Li Y, Ye D, Chen X, Lu X, Shao Z, et al. 2009. Breviane spiroditerpenoids from an extreme-tolerant Penicillium sp. isolated from a deep sea sediment sample. Journal of Natural Products 72:912−16 doi: 10.1021/np900116m |
[16] |
Mcrae CF, Hocking AD, Seppelt RD. 1999. Penicillium species from terrestrial habitats in the Windmill Islands, East Antarctica, including a new species Penicillium antarcticum. Polar Biology 21:97−111 doi: 10.1007/s003000050340 |
[17] |
Sonjak S, Frisvad JC, Gunde-Cimerman N. 2007. Genetic variation among Penicillium crustosum isolates from Arctic and other ecological niches. Microbial Ecology 54:298−305 doi: 10.1007/s00248-006-9202-1 |
[18] |
Dhakar K, Sharma A, Pandey A. 2014. Cold, pH and salt tolerant Penicillium spp. inhabit the high altitude soils in Himalaya, India. World Journal of Microbiology and Biotechnology 30:1315−24 doi: 10.1007/s11274-013-1545-4 |
[19] |
Xu X, Chen J, Xu H, Li D. 2014. Role of a major facilitator superfamily transporter in adaptation capacity of Penicillium funiculosum under extreme acidic stress. Fungal Genetics and Biology 69:75−83 doi: 10.1016/j.fgb.2014.06.002 |
[20] |
Miller HM, Sullivan PA, Shepherd MG. 1974. Intracellular protein breakdown in thermophilic and mesophilic fungi. The Biochemical Journal 144:209−14 doi: 10.1042/bj1440209 |
[21] |
Kumar S, Mathur A, Singh V, Nandy S, Khare SK, et al. 2012. Bioremediation of waste cooking oil using a novel lipase produced by Penicillium chrysogenum SNP5 grown in solid medium containing waste grease. Bioresource Technology 120:300−4 doi: 10.1016/j.biortech.2012.06.018 |
[22] |
Kumari A, Ahmad R, Negi S, Khare SK. 2017. Biodegradation of waste grease by Penicillium chrysogenum for production of fatty acid. Bioresource TechnologBioresource Technolog 226:31−38 doi: 10.1016/j.biortech.2016.12.006 |
[23] |
Leitão AL, Duarte MP, Oliveira JS. 2007. Degradation of phenol by a halotolerant strain of Penicillium chrysogenum. International Biodeterioration & Biodegradation 59:220−25 doi: 10.1016/j.ibiod.2006.09.009 |
[24] |
Guedes SF, Mendes B, Leitão AL. 2011. Resorcinol degradation by a Penicillium chrysogenum strain under osmotic stress: mono and binary substrate matrices with phenol. Biodegradation 22:409−19 doi: 10.1007/s10532-010-9413-5 |
[25] |
Mannan S, Fakhru'l-Razi A, Alam MZ. 2005. Use of fungi to improve bioconversion of activated sludge. Water Research 39:2935−43 doi: 10.1016/j.watres.2005.04.074 |
[26] |
Veiter L, Rajamanickam V, Herwig C. 2018. The filamentous fungal pellet—relationship between morphology and productivity. Applied Microbiology and Biotechnology 102:2997−3006 doi: 10.1007/s00253-018-8818-7 |
[27] |
Dynesen J, Nielsen J. 2003. Surface hydrophobicity of Aspergillus nidulans conidiospores and its role in pellet formation. Biotechnology Progress 19:1049−52 doi: 10.1021/bp0340032 |
[28] |
Cronenberg CCH, Ottengraf SPP, van den Heuvel JC, Pottel F, Sziele D, et al. 1994. Influence of age and structure of Pencillium chrysogenum pellets on the internal concentration profiles. Bioprocess Engineering 10:209−16 doi: 10.1007/BF00369531 |
[29] |
Alshabib M, Onaizi SA. 2019. A review on phenolic wastewater remediation using homogeneous and heterogeneous enzymatic processes: Current status and potential challenges. Separation and Purification Technology 219:186−207 doi: 10.1016/j.seppur.2019.03.028 |
[30] |
McAllister KA, Lee H, Trevors JT. 1996. Microbial degradation of pentachlorophenol. Biodegradation 7:1−40 doi: 10.1007/BF00056556 |
[31] |
Field JA, Sierra-Alvarez R. 2008. Microbial degradation of chlorinated phenols. Reviews in Environmental Science and Bio/Technology 7:211−41 doi: 10.1007/s11157-007-9124-5 |
[32] |
Hofrichter M, Günther T, Fritsche W. 1992. Metabolism of phenol, chloro-and nitrophenols by the Penicillium strain Bi 7/2 isolated from a contaminated soil. Biodegradation 3:415−21 doi: 10.1007/BF00240363 |
[33] |
Marr J, Kremer S, Sterner O, Anke H. 1996. Transformation and mineralization of halophenols by Penicillium simplicissimum SK9117. Biodegradation 7:165−71 doi: 10.1007/BF00114628 |
[34] |
Wunder T, Marr J, Kremer S, Sterner O, Anke H. 1997. 1-Methoxypyrene and 1,6-dimethoxypyrene: two novel metabolites in fungal metabolism of polycyclic aromatic hydrocarbons. Archives of Microbiology 167:310−16 doi: 10.1007/s002030050449 |
[35] |
Wunderwald U, Hofrichter M, Kreisell G, Fritsche W. 1997. Transformation of difluorinated phenols by Penicillium frequentans Bi 7/2. Biodegradation 8:379−85 doi: 10.1023/A:1008230926973 |
[36] |
Ferreira-Guedes S, Leitão AL. 2018. Simultaneous removal of dihydroxybenzenes and toxicity reduction by Penicillium chrysogenum var. halophenolicum under saline conditions. Ecotoxicology and Environmental Safety 150:240−50 doi: 10.1016/j.ecoenv.2017.12.046 |
[37] |
Wolski EA, Durruty I, Haure PM, González JF. 2012. Penicillium chrysogenum: Phenol degradation abilities and kinetic model. Water, Air, & Soil Pollution 223:2323−32 doi: 10.1007/s11270-011-1026-z |
[38] |
Bhatt P, Kumar MS, Mudliar S, Chakrabarti T. 2007. Biodegradation of Chlorinated Compounds—A Review. Critical Reviews in Environmental Science and Technology 37:165−98 doi: 10.1080/10643380600776130 |
[39] |
Taseli BK, Gokcay CF. 2005. Degradation of chlorinated compounds by Penicillium camemberti in batch and up-flow column reactors. Process Biochemistry 40:917−23 doi: 10.1016/j.procbio.2004.02.006 |
[40] |
Yan Z, He H, Yang C, Zeng G, Luo L, et al. 2017. Biodegradation of 3,5-dimethyl-2,4-dichlorophenol in saline wastewater by newly isolated Penicillium sp. yz11-22N2. Journal of Environmental Sciences 57:211−20 doi: 10.1016/j.jes.2017.02.012 |
[41] |
Aarthi G, Harikrishnan S, Sudarshan S, Karthick A, Parivallal M, Jayalakshmia S. 2021. Optimization of culture conditions for phenol degrading fungi, Penicillium notatum SJ-04 isolated from industrial polluted East coastal area of Tamil Nadu. Journal of Interdisciplinary Cycle Research VIII:973−85 |
[42] |
Pavithra GG, Kumar SP, Jaikumar V, Sundar Rajan P. 2019. Removal of colorants from wastewater: A review on sources and treatment strategies. Journal of Industrial and Engineering Chemistry 75:1−19 doi: 10.1016/j.jiec.2019.02.011 |
[43] |
Saratale RG, Saratale GD, Chang JS, Govindwar SP. 2011. Bacterial decolorization and degradation of azo dyes: A review. Journal of the Taiwan Institute of Chemical Engineers 42:138−57 doi: 10.1016/j.jtice.2010.06.006 |
[44] |
Vikrant K, Giri BS, Raza N, Roy K, Kim KH, et al. 2018. Recent advancements in bioremediation of dye: Current status and challenges. Bioresource Technology 253:355−67 doi: 10.1016/j.biortech.2018.01.029 |
[45] |
Almeida EJR, Corso CR. 2014. Comparative study of toxicity of azo dye Procion Red MX-5B following biosorption and biodegradation treatments with the fungi Aspergillus niger and Aspergillus terreus. Chemosphere 112:317−22 doi: 10.1016/j.chemosphere.2014.04.060 |
[46] |
Gallagher KA, Healy MG, Allen SJ. 1997. Biosorption of synthetic dye and metal ions from aqueous effluents using fungal biomass. Studies in Environmental Science 66:27−50 doi: 10.1016/S0166-1116(97)80033-7 |
[47] |
Shedbalkar U, Dhanve R, Jadhav J. 2008. Biodegradation of triphenylmethane dye cotton blue by Penicillium ochrochloron MTCC 517. Journal of Hazardous Materials 157:472−79 doi: 10.1016/j.jhazmat.2008.01.023 |
[48] |
Shedbalkar U, Jadhav JP. 2011. Detoxification of malachite green and textile industrial effluent by Penicillium ochrochloron. Biotechnology and Bioprocess Engineering 16:196−204 doi: 10.1007/s12257-010-0069-0 |
[49] |
Yang Y, Jin D, Wang G, Liu D, Jia X, et al. 2011. Biosorption of Acid Blue 25 by unmodified and CPC-modified biomass of Penicillium YW01: Kinetic study, equilibrium isotherm and FTIR analysis. Colloids and Surfaces B: Biointerfaces 88:521−26 doi: 10.1016/j.colsurfb.2011.07.047 |
[50] |
Sen SK, Raut S, Bandyopadhyay P, Raut S. 2016. Fungal decolouration and degradation of azo dyes: A review. Fungal Biology Reviews 30:112−33 doi: 10.1016/j.fbr.2016.06.003 |
[51] |
Singh PK, Singh RL. 2017. Bio-removal of Azo Dyes: A Review. International Journal of Applied Sciences and Biotechnology 5:108−26 doi: 10.3126/ijasbt.v5i2.16881 |
[52] |
Bergsten-Torralba LR, Nishikawa MM, Baptista DF, Magalhães DP, da Silva M. 2009. Decolorization of different textile dyes by Penicillium simplicissimum and toxicity evaluation after fungal treatment. Brazilian Journal of Microbiology 40:808−17 doi: 10.1590/S1517-83822009000400011 |
[53] |
Chen SH, Ting ASY. 2015. Biosorption and biodegradation potential of triphenylmethane dyes by newly discovered Penicillium simplicissimum isolated from indoor wastewater sample. International Biodeterioration & Biodegradation 103:1−7 doi: 10.1016/j.ibiod.2015.04.004 |
[54] |
Chen SH, Cheow YL, Ng SL, Ting ASY. 2019. Biodegradation of triphenylmethane dyes by non-white rot fungus Penicillium simplicissimum: Enzymatic and toxicity studies. International Journal of Environmental Research 13:273−82 doi: 10.1007/s41742-019-00171-2 |
[55] |
Jasińska A, Rózalska S, Bernat P, Paraszkiewicz K, Długoński J. 2012. Malachite green decolorization by non-basidiomycete filamentous fungi of Penicillium pinophilum and Myrothecium roridum. International Biodeterioration & Biodegradation 73:33−40 doi: 10.1016/j.ibiod.2012.06.025 |
[56] |
Ramalingam NS, Saraswathy N, Shanmugapriya S, Shakthipriyadarshini S, Sadasivam S, et al. 2010. Decolorization of textile dyes by Aspergillus tamarii, mixed fungal culture and Penicillium purpurogenum. Journal of Scientific & Industrial Research 69:151−53 |
[57] |
Zheng Z, Levin RE, Pinkham JL, Shetty K. 1999. Decolorization of polymeric dyes by a novel Penicillium isolate. Process Biochemistry 34:31−37 doi: 10.1016/S0032-9592(98)00061-2 |
[58] |
Erdal S, Taskin M. 2010. Uptake of textile dye Reactive Black-5 by Penicillium chrysogenum MT-6 isolated from cement-contaminated soil. African Journal of Microbiology Research 4:618−25 |
[59] |
Fouda A, Hassan SED, Saied E, Azab MS. 2021. An eco-friendly approach to textile and tannery wastewater treatment using maghemite nanoparticles (γ-Fe2O3-NPs) fabricated by Penicillium expansum strain (K-w). Journal of Environmental Chemical Engineering 9:104693 doi: 10.1016/j.jece.2020.104693 |
[60] |
Tiwari B, Sellamuthu B, Ouarda Y, Drogui P, Tyagi RD, et al. 2017. Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresource Technology 224:1−12 doi: 10.1016/j.biortech.2016.11.042 |
[61] |
Olicón-Hernández DR, Gómez-Silván C, Pozo C, Andersen GL, González-Lopez J, et al. 2021. Penicillium oxalicum XD-3.1 removes pharmaceutical compounds from hospital wastewater and outcompetes native bacterial and fungal communities in fluidised batch bioreactors. International Biodeterioration & Biodegradation 158:105179 doi: 10.1016/j.ibiod.2021.105179 |
[62] |
aus der Beek T, Weber FA, Bergmann A, Hickmann S, Ebert I, et al. 2016. Pharmaceuticals in the environment-global occurrences and perspectives. Environmental Toxicology and Chemistry 35:823−35 doi: 10.1002/etc.3339 |
[63] |
Tian H, Ma YJ, Li WY, Wang JW. 2018. Efficient degradation of triclosan by an endophytic fungus Penicillium oxalicum B4. Environmental Science and Pollution Research 25:8963−75 doi: 10.1007/s11356-017-1186-5 |
[64] |
Rengarajan T, Rajendran P, Nandakumar N, Lokeshkumar B, Rajendran P, et al. 2015. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pacific Journal of Tropical Biomedicine 5:182−89 doi: 10.1016/S2221-1691(15)30003-4 |
[65] |
Johnsen AR, Karlson U. 2007. Diffuse PAH contamination of surface soils: environmental occurrence, bioavailability, and microbial degradation. Applied Microbiology and Biotechnology 76:533−43 doi: 10.1007/s00253-007-1045-2 |
[66] |
Launen L, Pinto L, Wiebe C, Kiehlmann E, Moore M. 1995. The oxidation of pyrene and benzo[a]pyrene by nonbasidiomycete soil fungi. Canadian Journal of Microbiology 41:477−88 doi: 10.1139/m95-064 |
[67] |
Boonchan S, Britz ML, Stanley GA. 2000. Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Applied and Environmental Microbiology 66:1007−19 doi: 10.1128/AEM.66.3.1007-1019.2000 |
[68] |
Garon D, Krivobok S, Wouessidjewe D, Seigle-Murandi F. 2002. Influence of surfactants on solubilization and fungal degradation of fluorene. Chemosphere 47:303−9 doi: 10.1016/S0045-6535(01)00299-5 |
[69] |
Garon D, Sage L, Seigle-Murandi F. 2004. Effects of fungal bioaugmentation and cyclodextrin amendment on fluorene degradation in soil slurry. Biodegradation 15:1−8 doi: 10.1023/B:BIOD.0000009934.87627.91 |
[70] |
Saraswathy A, Hallberg R. 2002. Degradation of pyrene by indigenous fungi from a former gasworks site. FEMS Microbiology Letters 210:227−32 doi: 10.1111/j.1574-6968.2002.tb11185.x |
[71] |
Saraswathy A, Hallberg R. 2005. Mycelial pellet formation by Penicillium ochrochloron species due to exposure to pyrene. Microbiological Research 160:375−83 doi: 10.1016/j.micres.2005.03.001 |
[72] |
Meléndez-Estrada J, Amezcua-Allieri MA, Alvarez PJJ, Rodríguez-Vázquez R. 2006. Phenanthrene removal by Penicillium frequentans grown on a solid-state culture: Effect of oxygen concentration. Environmental Technology 27:1073−80 doi: 10.1080/09593332708618720 |
[73] |
Vanishree M, Thatheyus AJ, Ramya D. 2014. Biodegradation of Petrol Using the Fungus Penicillium sp. Science International 2:26−31 doi: 10.17311/sciintl.2014.26.31 |
[74] |
Govarthanan M, Fuzisawa S, Hosogai T, Chang YC. 2017. Biodegradation of aliphatic and aromatic hydrocarbons using the filamentous fungus Penicillium sp. CHY-2 and characterization of its manganese peroxidase activity. RSC Advances 7:20716−23 doi: 10.1039/C6RA28687A |
[75] |
Aranda E, Godoy P, Reina R, Badia-Fabregat M, Rosell M, et al. 2017. Isolation of Ascomycota fungi with capability to transform PAHs: Insights into the biodegradation mechanisms of Penicillium oxalicum. International Biodeterioration & Biodegradation 122:141−50 doi: 10.1016/j.ibiod.2017.05.015 |
[76] |
Mahajan M, Manek D, Vora N, Kothari RK, Mootapally C, et al. 2021. Fungi with high ability to crunch multiple Polycyclic Aromatic Hydrocarbons (PAHs) from the pelagic sediments of Gulfs of Gujarat. Marine Pollution Bulletin 167:112293 doi: 10.1016/j.marpolbul.2021.112293 |
[77] |
Zhou H, Li X, Hu B, Wu M, Zhang Y, et al. 2021. Assembly of fungal mycelium-carbon nanotube composites and their application in pyrene removal. Journal of Hazardous Materials 415:125743 doi: 10.1016/j.jhazmat.2021.125743 |
[78] |
Muangchinda C, Chavanich S, Viyakarn V, Watanabe K, Imura S, et al. 2015. Abundance and diversity of functional genes involved in the degradation of aromatic hydrocarbons in Antarctic soils and sediments around Syowa Station. Environmental Science and Pollution Research 22:4725−35 doi: 10.1007/s11356-014-3721-y |
[79] |
Miri S, Naghdi M, Rouissi T, Kaur Brar S, Martel R. 2019. Recent biotechnological advances in petroleum hydrocarbons degradation under cold climate conditions: A review. Critical Reviews in Environmental Science and Technology 49:553−86 doi: 10.1080/10643389.2018.1552070 |
[80] |
Rincón J, Cañizares P, García MT. 2007. Improvement of the Waste-Oil Vacuum-Distillation Recycling by Continuous Extraction with Dense Propane. Industrial & Engineering Chemistry Research 46:266−72 doi: 10.1021/ie060831z |
[81] |
Alves AM, de Moura RB, Carvalho AKF, de Castro HF, Andrade GSS. 2019. Penicillium citrinum whole-cells catalyst for the treatment of lipid-rich wastewater. Biomass and Bioenergy 120:433−38 doi: 10.1016/j.biombioe.2018.12.004 |
[82] |
Pandey A, Benjamin S, Soccol CR, Nigam P, Krieger N, et al. 1999. The realm of microbial lipases in biotechnology. Biotechnology and Applied Biochemistry 29:119−31 |
[83] |
Benjamin S, Pandey A. 2001. Isolation and characterization of three distinct forms of lipases from Candida rugosa produced in solid state fermentation. Archives of Biology and Technology 44:213−21 doi: 10.1590/S1516-89132001000200016 |
[84] |
Bancerz R, Ginalska AG, Fiedurek AJ, Gromada AA. 2005. Cultivation conditions and properties of extracellular crude lipase from the psychrotrophic fungus Penicillium chrysogenum 9. Journal of Industrial Microbiology and Biotechnology 32:253−60 doi: 10.1007/s10295-005-0235-0 |
[85] |
Kumar S, Katiyar N, Ingle P, Negi S. 2011. Use of evolutionary operation (EVOP) factorial design technique to develop a bioprocess using grease waste as a substrate for lipase production. Bioresource Technology 102:4909−12 doi: 10.1016/j.biortech.2010.12.114 |
[86] |
Luo JJ, Ding JF, Li GW, Zheng TL, Luo ZH. 2014. Characterization of a formaldehyde degrading fungus Penicillium chrysogenum DY-F2 isolated from deep sea sediment. International Biodeterioration & Biodegradation 89:45−49 doi: 10.1016/j.ibiod.2013.12.019 |
[87] |
Costa F, Neto M, Nicolau A, Tavares T. 2015. Biodegradation of diethylketone by Penicillium sp. and Alternaria sp. - A comparative study biodegradation of diethylketone by fungi. Current Biochemical Engineering 2:81−89 doi: 10.2174/2212711901666140812225947 |
[88] |
Germain J, Raveton M, Binet MN, Mouhamadou B. 2021. Screening and metabolic potential of fungal strains isolated from contaminated soil and sediment in the polychlorinated biphenyl degradation. Ecotoxicology and Environmental Safety 208:111703 doi: 10.1016/j.ecoenv.2020.111703 |
[89] |
Amin M, Bhatti HN, Sadaf S, Bilal M. 2021. Optimization of lipase production by response surface methodology and its application for efficient biodegradation of polyester vylon-200. Catalysis Letters 151:8 doi: 10.1007/s10562-020-03266-0 |
[90] |
Amin M, Bhatti HN, Nawaz S, Bilal M. 2021. Penicillium fellutanum lipase as a green and ecofriendly biocatalyst for depolymerization of poly (ɛ-caprolactone): Biochemical, kinetic, and thermodynamic investigations. Biotechnology and Applied Biochemistry 69:410−19 doi: 10.1002/bab.2118 |