[1]

Li B, Zhao Y, Zhu Q, Zhang Z, Fan C, et al. 2017. Mapping of powdery mildew resistance genes in melon (Cucumis melo L.) by bulked segregant analysis. Scientia Horticulturae 220:160−67

doi: 10.1016/j.scienta.2017.04.001
[2]

Cui H, Fan C, Ding Z, Wang X, Tang L, et al. 2022. CmPMRl and CmPMrs are responsible for resistance to powdery mildew caused by Podosphaera xanthii race 1 in melon. Theoretical and Applied Genetics 135:1209−22

doi: 10.1007/s00122-021-04025-4
[3]

Vielba-Fernández A, Polonio Á, Ruiz-Jiménez L, de Vicente A, Pérez-García A, et al. 2020. Fungicide resistance in powdery mildew fungi. Microorganisms 8:1431

doi: 10.3390/microorganisms8091431
[4]

Dallagnol LJ, Rodrigues FA, Tanaka FAO, Amorim L, Camargo LEA. 2012. Effect of potassium silicate on epidemic components of powdery mildew on melon. Plant Pathology 61:323−30

doi: 10.1111/j.1365-3059.2011.02518.x
[5]

Howlader J, Park JI, Kim HT, Ahmed NU, Robin AHK, et al. 2017. Differential expression under Podosphaera xanthii and abiotic stresses reveals candidate MLO family genes in Cucumis melo L. Tropical Plant Biology 10:151−68

doi: 10.1007/s12042-017-9194-7
[6]

Wang Z, Li H, Zhang D, Guo L, Chen J, et al. 2015. Genetic and physical mapping of powdery mildew resistance gene MlHLT in Chinese wheat landrace Hulutou. Theoretical and Applied Genetics 128:365−73

doi: 10.1007/s00122-014-2436-2
[7]

Engels AJG, Mantel BC, de Waard MA. 1996. Effect of split applications of fenpropimorph-containing fungicides on sensitivity of Erysiphe graminis f. sp. tritici. Plant Pathology 45:636−43

doi: 10.1046/j.1365-3059.1996.d01-7.x
[8]

Thomma BPHJ, Nürnberger T, Joosten MHAJ. 2011. Of PAMPs and effectors: The blurred PTI-ETI cichotomy. The Plant Cell 23:4−15

doi: 10.1105/tpc.110.082602
[9]

Soliman MH, El-Mohamedy RSR. 2017. Induction of defense-related physiological and antioxidant enzyme response against powdery mildew disease in okra (Abelmoschus esculentus L.) plant by using chitosan and potassium salts. Mycobiology 45:409−420

doi: 10.5941/MYCO.2017.45.4.409
[10]

Karabulut OA, Arslan U, Ilhan K, Yagdi K. 2006. The effect of sodium bicarbonate alone or in combination with a reduced rate of mancozeb on the control of leaf rust [Puccinia triticina] in wheat. Canadian Journal of Plant Pathology 28:484−88

doi: 10.1080/07060660609507323
[11]

Türkkan M, Erper İ, Eser Ü, Baltacı A. 2018. Evaluation of inhibitory effect of some bicarbonate salts and fungicides against hazelnut powdery mildew. Gesunde Pflanzen 70:39−44

doi: 10.1007/s10343-017-0411-y
[12]

Wenneker M, Kanne J. 2010. Use of potassium bicarbonate (Armicarb) on the control of powdery mildew (Sphaerotheca mors-uvae) of gooseberry (Ribes uva-crispa). Communications in Agricultural and Applied Biological Sciences 75:563−68

[13]

Sehsah MD, El-Kot GA, El-Nogoumy BA, Alorabi M, El-Shehawi AM, et al. 2022. Efficacy of Bacillus subtilis, Moringa oleifera seeds extract and potassium bicarbonate on Cercospora leaf spot on sugar beet. Saudi Journal of Biological Sciences 29:2219−29

doi: 10.1016/j.sjbs.2021.11.039
[14]

Youssef K, Roberto SR, de Oliveira AG. 2019. Ultra-structural alterations in Botrytis cinerea—The causal agent of gray mold—treated with salt solutions. Biomolecules 9:582

doi: 10.3390/biom9100582
[15]

Wang S, Yan W, Yang X, Zhang J, Shi Q. 2021. Comparative methylome reveals regulatory roles of DNA methylation in melon resistance to Podosphaera xanthii. Plant Science 309:110954

doi: 10.1016/j.plantsci.2021.110954
[16]

Cui H, Ding Z, Fan C, Zhu Z, Zhang H, et al. 2020. Genetic mapping and nucleotide diversity of two powdery mildew resistance loci in melon (Cucumis melo). Phytopathology 110:1970−79

doi: 10.1094/PHYTO-03-20-0078-R
[17]

Martínez-Cruz J, Romero D, Hierrezuelo J, Thon M, de Vicente A, et al. 2021. Effectors with chitinase activity (EWCAs), a family of conserved, secreted fungal chitinases that suppress chitin-triggered immunity. The Plant Cell 33:1319−40

doi: 10.1093/plcell/koab011
[18]

Vela-Corcía D, Bellón-Gómez D, López-Ruiz F, Torés JA, Pérez-García A. 2014. The Podosphaera fusca TUB2 gene, a molecular “Swiss army knife” with multiple applications in powdery mildew research. Fungal Biology 118:228−41

doi: 10.1016/j.funbio.2013.12.001
[19]

Turan M, Ekinci M, Kul R, Boynueyri FG, Yildirim E. 2022. Mitigation of salinity stress in cucumber seedlings by exogenous hydrogen sulfide. Journal of Plant Research 135:517−29

doi: 10.1007/s10265-022-01391-y
[20]

Liu S, Dong Y, Xu L, Kong J. 2014. Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings. Plant Growth Regulation 73:67−78

doi: 10.1007/s10725-013-9868-6
[21]

Bai Y, Feng Z, Paerhati M, Wang J. 2021. Phenylpropanoid metabolism enzyme activities and gene expression in postharvest melons inoculated with Alternaria alternata. Applied Biological Chemistry 64:83

doi: 10.1186/s13765-021-00654-x
[22]

Zhang F, Wang Y, Liu C, Chen F, Ge H, et al. 2019. Trichoderma harzianum mitigates salt stress in cucumber via multiple responses. Ecotoxicology and Environmental Safety 170:436−45

doi: 10.1016/j.ecoenv.2018.11.084
[23]

Jing X, Wang H, Gong B, Liu S, Wei M, et al. 2018. Secondary and sucrose metabolism regulated by different light quality combinations involved in melon tolerance to powdery mildew. Plant Physiology and Biochemistry 124:77−87

doi: 10.1016/j.plaphy.2017.12.039
[24]

Wang Q, Liang X, Dong Y, Xu L, Zhang X. 2013. Effects of exogenous nitric oxide on cadmium toxicity, element contents and antioxidative system in perennial ryegrass. Plant Growth Regulation 69:11−20

doi: 10.1007/s10725-012-9742-y
[25]

Toor RK, Savage GP. 2005. Antioxidant activity in different fractions of tomatoes. Food Research International 38:487−94

doi: 10.1016/j.foodres.2004.10.016
[26]

Sewalt V, Ni W, Blount JW, Jung HG, Masoud SA, et al. 1997. Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of L-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase. Plant Physiology 115:41−50

doi: 10.1104/pp.115.1.41
[27]

Risteli M, Niemitalo O, Lankinen H, Juffer AH, Myllylä R. 2004. Characterization of collagenous peptides bound to lysyl hydroxylase isoforms. Journal of Biological Chemistry 279:37535

doi: 10.1074/jbc.M405638200
[28]

Zaynab M, Fatima M, Abbas S, Sharif Y, Umair M, et al. 2018. Role of secondary metabolites in plant defense against pathogens. Microbial Pathogenesis 124:198−202

doi: 10.1016/j.micpath.2018.08.034
[29]

Gowtham HG, Singh SB, Shilpa N, Aiyaz M, Nataraj K, et al. 2022. Insight into recent progress and perspectives in improvement of antioxidant machinery upon PGPR augmentation in plants under drought stress: A review. Antioxidants 11:1763

doi: 10.3390/antiox11091763
[30]

Czajkowski R, van der Wolf JM, Krolicka A, Ozymko Z, Narajczyk M. 2015. Salicylic acid can reduce infection symptoms caused by Dickeya solani in tissue culture grown potato (Solanum tuberosum L.) plants. European Journal of Plant Pathology 141:545−58

doi: 10.1007/s10658-014-0561-z
[31]

Yildirim I, Onogur E, Irshad M. 2002. Investigations on the efficacy of some natural chemicals against powdery mildew [Uncinula necator (Schw.) Burr.] of grape. Phytopathology 150:697−702

doi: 10.1046/j.1439-0434.2002.00827.x
[32]

Cerkauskas RF, Ferguson G, Banik M. 2011. Powdery mildew (Leveillula taurica) on greenhouse and field peppers in Ontario-Host range, cultivar response and disease management strategies. Canadian Journal of Plant Pathology 33:485−98

doi: 10.1080/07060661.2011.619828
[33]

Mitre V, Buta E, lukács L, Ioana Mitre I, Teodorescu R, et al. 2018. Management of apple scab and powdery mildew using bicarbonate salts and other alternative organic products with fungicide effect in apple cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 46:115−21

doi: 10.15835/nbha46110783
[34]

Erb M, Kliebenstein DJ. 2020. Plant secondary metabolites as defenses, regulators, and primary metabolites: The blurred functional trichotomy. Plant Physiology 184:39−52

doi: 10.1104/pp.20.00433
[35]

Arias Padró MD, Caboni E, Salazar Morin KA, Meraz Mercado MA, Olalde-Portugal V. 2021. Effect of Bacillus subtilis on antioxidant enzyme activities in tomato grafting. PeerJ 9:e10984

doi: 10.7717/peerj.10984
[36]

Alizadeh-Moghaddam G, Rezayatmand Z, Esfahani MN, Khozaei M. 2020. Bio-genetic analysis of resistance in tomato to early blight disease, Alternaria alternata. Alternaria alternata. Phytochemistry 179:112486

doi: 10.1016/j.phytochem.2020.112486
[37]

Li L, Liu Q, Xue H, Bi Y, Raza H, et al. 2022. Acetylsalicylic acid (ASA) suppressed Fusarium rot development and neosolaniol (NEO) accumulation by activating phenylpropanoid metabolism in muskmelon fruit. European Journal of Plant Pathology 163:625−39

doi: 10.1007/s10658-022-02502-0
[38]

Siddaiah CN, Satyanarayana NR, Mudili V, Kumar Gupta V, Gurunathan S, et al. 2017. Elicitation of resistance and associated defense responses in Trichoderma hamatum induced protection against pearl millet downy mildew pathogen. Scientific Reports 7:43991

doi: 10.1038/srep43991
[39]

Guo D, Chen F, Inoue K, Blount JW, Dixon RA. 2001. Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: Impacts on lignin structure and implications for the biosynthesis of G and S lignin. The Plant Cell 13:73−88

doi: 10.1105/tpc.13.1.73
[40]

Rogers LA, Dubos C, Cullis IF, Surman C, Poole M, et al. 2005. Light, the circadian clock, and sugar perception in the control of lignin biosynthesis. Journal of Experimental Botany 56:1651−63

doi: 10.1093/jxb/eri162
[41]

Li C, He Q, Zhang F, Yu J, Li C, et al. 2019. Melatonin enhances cotton immunity to Verticillium wilt via manipulating lignin and gossypol biosynthesis. Plant J 100:784−800

doi: 10.1111/tpj.14477
[42]

Gourlay G, Constabel CP. 2019. Condensed tannins are inducible antioxidants and protect hybrid poplar against oxidative stress. Tree Physiology 39:345−55

doi: 10.1093/treephys/tpy143
[43]

Apel K, Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology 55:373−99

doi: 10.1146/annurev.arplant.55.031903.141701
[44]

Berrios L, Rentsch JD. 2022. Linking reactive oxygen species (ROS) to abiotic and biotic feedbacks in plant microbiomes: The dose makes the poison. International Journal of Molecular Sciences 23:4402

doi: 10.3390/ijms23084402
[45]

Hu Y, Zhong S, Zhang M, Liang Y, Gong G, et al. 2020. Potential Role of photosynthesis in the regulation of reactive oxygen species and defence responses to Blumeria graminis f. sp. tritici in wheat. International Journal of Molecular Sciences 21:5767

doi: 10.3390/ijms21165767
[46]

Younas HS, Abid M, Shaaban M, Ashraf M. 2021. Influence of silicon and chitosan on growth and physiological attributes of maize in a saline field. Physiology and Molecular Biology of Plants 27:387−97

doi: 10.1007/s12298-021-00940-4
[47]

Habib S, Lwin YY, Li N. 2021. Down-regulation of SlGRAS10 in tomato confers abiotic stress tolerance. Genes 12:623

doi: 10.3390/genes12050623
[48]

Awan ZA, Kashif AS, Khan A. 2018. Variations in total phenolics and antioxidant enzymes cause phenotypic variability and differential resistant response in tomato genotypes against early blight disease. Scientia Horticulturae 239:216−23

doi: 10.1016/j.scienta.2018.05.044
[49]

Awan ZA, Shoaib A, Iftikhar MS, Jan BL, Ahmad P. 2022. Combining biocontrol agent with plant nutrients for integrated control of tomato early blight through the modulation of physio-chemical attributes and key antioxidants. Frontiers in Microbiology 13:807699

doi: 10.3389/fmicb.2022.807699
[50]

Steinberg G, Schuster M, Gurr SJ, Schrader TA, Schrader M, et al. 2020. A lipophilic cation protects crops against fungal pathogens by multiple modes of action. Nature Communications 11:1608

doi: 10.1038/s41467-020-14949-y
[51]

Fallir E, Grinberg S, Ziv O. 1997. Potassium bicarbonate reduces postharvest decay development on bell pepper fruits. Journal of Horticultural Science 72:35−41

doi: 10.1080/14620316.1997.11515489
[52]

Tang J, Zhou L, Cao X, Xie G, Sui P, et al. 2006. Inhibition of plant extracts, sodium carbonate and sodium bicarbonate on the pathogen of poplar canker Botryosphaeria dothidea. Acta Phytopathologica Sinica 36:446−53

doi: 10.3321/j.issn:0412-0914.2006.05.011
[53]

Palou L, Usall J, Munoz JA, Smilanick JL, Viñas I. 2002. Hot water, sodium carbonate, and sodium bicarbonate for the control of postharvest green and blue molds of clementine mandarins. Postharvest Biology and Technology 24:93−96

doi: 10.1016/S0925-5214(01)00178-8
[54]

Sun L, Song S, Deng X, Sun Y, Wen C, et al. 2015. Inhibition mechanism of ammonium bicarbonate on Fusarium oxysporum. Journal of Nanjing Agricultural University 38:295−303

doi: 10.7685/j.issn.1000-2030.2015.02.018
[55]

Punja ZK. 1982. Effects of inorganic salts, carbonate-bicarbonate anions, ammonia, and the modifying influence of pH on sclerotial germination of Sclerotium rolfsii. Phytopathology 72:635−39

doi: 10.1094/phyto-72-635
[56]

Olivier C, MacNeil CR, Loria R. 1999. Application of organic and inorganic salts to field-grown potato tubers can suppress silver scurf during potato storage. Plant Disease 83:814−18

doi: 10.1094/PDIS.1999.83.9.814