[1] |
Sabelli PA, Larkins BA. 2009. The development of endosperm in grasses. Plant Physiology 149:14−26 doi: 10.1104/pp.108.129437 |
[2] |
Sun X, Shantharaj D, Kang X, Ni M. 2010. Transcriptional and hormonal signaling control of Arabidopsis seed development. Current Opinion in Plant Biology 13:611−20 doi: 10.1016/j.pbi.2010.08.009 |
[3] |
Ingram GC. 2010. Family life at close quarters: communication and constraint in angiosperm seed development. Protoplasma 247:195−214 doi: 10.1007/s00709-010-0184-y |
[4] |
Figueiredo DD, Köhler C. 2016. Bridging the generation gap: communication between maternal sporophyte, female gametophyte and fertilization products. Current Opinion in Plant Biology 29:16−20 doi: 10.1016/j.pbi.2015.10.008 |
[5] |
Garcia D, Fitz Gerald JN, Berger F. 2005. Maternal control of integument cell elongation and zygotic control of endosperm growth are coordinated to determine seed size in Arabidopsis. The Plant Cell 17:52−60 doi: 10.1105/tpc.104.027136 |
[6] |
Li N, Xu R, Li Y. 2019. Molecular networks of seed size control in plants. Annual Review of Plant Biology 70:435−63 doi: 10.1146/annurev-arplant-050718-095851 |
[7] |
Xiong H, Wang W, Sun M. 2021. Endosperm development is an autonomously programmed process independent of embryogenesis. The Plant cell 33:1151−60 doi: 10.1093/plcell/koab007 |
[8] |
Figueiredo DD, Batista RA, Roszak PJ, Hennig L, Köhler C. 2016. Auxin production in the endosperm drives seed coat development inArabidopsis. eLife 5:e20542 doi: 10.7554/elife.20542 |
[9] |
Beauzamy L, Fourquin C, Dubrulle N, Boursiac Y, Boudaoud A, et al. 2016. Endosperm turgor pressure decreases during early Arabidopsis seed development. Development 143:3295−99 doi: 10.1242/dev.137190 |
[10] |
Creff A, Brocard L, Ingram G. 2015. A mechanically sensitive cell layer regulates the physical properties of the Arabidopsis seed coat. Nature Communications 6:6382 doi: 10.1038/ncomms7382 |
[11] |
Boisnard-Lorig C, Colon-Carmona A, Bauch M, Hodge S, Doerner P, et al. 2001. Dynamic analyses of the expression of the HISTONE: YFP fusion protein in Arabidopsis show that syncytial endosperm is divided in mitotic domains. The Plant cell 13:495−509 doi: 10.1105/tpc.13.3.495 |
[12] |
Li J, Berger F. 2012. Endosperm: food for humankind and fodder for scientific discoveries. New Phytologist 195:290−305 doi: 10.1111/j.1469-8137.2012.04182.x |
[13] |
Olsen OA. 2004. Nuclear endosperm development in cereals and Arabidopsis thaliana. The Plant cell 16:S214−S227 doi: 10.1105/tpc.017111 |
[14] |
Sørensen MB, Mayer U, Lukowitz W, Robert H, Chambrier P, et al. 2002. Cellularisation in the endosperm of Arabidopsis thaliana is coupled to mitosis and shares multiple components with cytokinesis. Development 129:5567−76 doi: 10.1242/dev.00152 |
[15] |
Zhang M, Zheng H, Jin L, Xing L, Zou J, et al. 2022. miR169o and ZmNF-YA13 act in concert to coordinate the expression of ZmYUC1 that determines seed size and weight in maize kernels. New Phytologist 235:2270−84 doi: 10.1111/nph.18317 |
[16] |
Ji C, Xu L, Li Y, Fu Y, Li S, et al. 2022. The O2-ZmGRAS11 transcriptional regulatory network orchestrates the coordination of endosperm cell expansion and grain filling in maize. Molecular Plant 15:468−87 doi: 10.1016/j.molp.2021.11.013 |
[17] |
Garcia D, Saingery V, Chambrier P, Mayer U, Jürgens G, et al. 2003. Arabidopsis haiku mutants reveal new controls of seed size by endosperm. Plant Physiology 131:1661−70 doi: 10.1104/pp.102.018762 |
[18] |
Wang A, Garcia D, Zhang H, Feng K, Chaudhury A, et al. 2010. The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis. The Plant Journal 63:670−79 doi: 10.1111/j.1365-313x.2010.04271.x |
[19] |
Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A. 2005. MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. PNAS 102:17531−36 doi: 10.1073/pnas.0508418102 |
[20] |
Zhou Y, Zhang X, Kang X, Zhao X, Zhang X, et al. 2009. SHORT HYPOCOTYL UNDER BLUE1 associates with MINISEED3 and HAIKU2 promoters in vivo to regulate Arabidopsis seed development. The Plant cell 21:106−17 doi: 10.1105/tpc.108.064972 |
[21] |
Kang X, Li W, Zhou Y, Ni M. 2013. A WRKY transcription factor recruits the SYG1-like protein SHB1 to activate gene expression and seed cavity enlargement. PLoS Genetics 9:e1003347 doi: 10.1371/journal.pgen.1003347 |
[22] |
Zhang H, Cheng F, Xiao Y, Kang X, Wang X, et al. 2017. Global analysis of canola genes targeted by SHORT HYPOCOTYL UNDER BLUE 1 during endosperm and embryo development. The Plant Journal 91:158−71 doi: 10.1111/tpj.13542 |
[23] |
Kang IH, Steffen JG, Portereiko MF, Lloyd A, Drews GN. 2008. The AGL62 MADS domain protein regulates cellularization during endosperm development in Arabidopsis. The Plant Cell 20:635−47 doi: 10.1105/tpc.107.055137 |
[24] |
Mozgova I, Köhler C, Hennig L. 2015. Keeping the gate closed: functions of the polycomb repressive complex PRC2 in development. The Plant Journal 83:121−32 doi: 10.1111/tpj.12828 |
[25] |
Chen B, Maas L, Figueiredo D, Zhong Y, Reis R, et al. 2022. BABY BOOM regulates early embryo and endosperm development. PNAS 119:e2201761119 doi: 10.1073/pnas.2201761119 |
[26] |
Wu D, Wei Y, Zhao X, Li B, Zhang H, et al. 2022. Ancestral function but divergent epigenetic regulation of HAIKU2 reveals routes of seed developmental evolution. Molecular Plant 15:1575−89 doi: 10.1016/j.molp.2022.09.002 |
[27] |
Li J, Nie X, Tan JLH, Berger F. 2013. Integration of epigenetic and genetic controls of seed size by cytokinin in Arabidopsis. PNAS 110:15479−84 doi: 10.1073/pnas.1305175110 |
[28] |
Batista RA, Köhler C. 2020. Genomic imprinting in plants − revisiting existing models. Genes & Development 34:24−36 doi: 10.1101/gad.332924.119 |
[29] |
Aw SJ, Hamamura Y, Chen Z, Schnittger A, Berger F. 2010. Sperm entry is sufficient to trigger division of the central cell but the paternal genome is required for endosperm development in Arabidopsis. Development 137:2683−90 doi: 10.1242/dev.052928 |
[30] |
Kasahara RD, Notaguchi M, Nagahara S, Suzuki T, Susaki D, et al. 2016. Pollen tube contents initiate ovule enlargement and enhance seed coat development without fertilization. Science Advances 2:e1600554 doi: 10.1126/sciadv.1600554 |
[31] |
Zhao Y, Wang S, Wu W, Li L, Jiang T, et al. 2018. Clearance of maternal barriers by paternal miR159 to initiate endosperm nuclear division in Arabidopsis. Nature Communications 9:5011 doi: 10.1038/s41467-018-07429-x |
[32] |
Zhou Y, Zhang Y, Sun Y, Yu Y, Lei M, et al. 2021. The parent-of-origin lncRNA MISSEN regulates rice endosperm development. Nature Communications 12:6525 doi: 10.1038/s41467-021-26795-7 |
[33] |
Chen H, Li S, Li L, Wu W, Ke X, et al. 2018. Nα-acetyltransferases 10 and 15 are required for the correct initiation of endosperm cellularization in Arabidopsis. Plant & Cell Physiology 59:2113−28 doi: 10.1093/pcp/pcy135 |
[34] |
Zhang B, Li C, Li Y, Yu H. 2020. Mobile TERMINAL FLOWER1 determines seed size in Arabidopsis. Nature Plants 6:1146−57 doi: 10.1038/s41477-020-0749-5 |
[35] |
Cheng Z, Zhao X, Shao X, Wang F, Zhou C, et al. 2014. Abscisic acid regulates early seed development in Arabidopsis by ABI5-mediated transcription of SHORT HYPOCOTYL UNDER BLUE1. The Plant cell 26:1053−68 doi: 10.1105/tpc.113.121566 |
[36] |
Xia Q, Ponnaiah M, Thanikathansubramanian K, Corbineau F, Bailly C, et al. 2019. Re-localization of hormone effectors is associated with dormancy alleviation by temperature and after-ripening in sunflower seeds. Scientific Reports 9:4861 doi: 10.1038/s41598-019-40494-w |
[37] |
Liu HX, Stone SL. 2013. Cytoplasmic degradation of the Arabidopsis transcription factor ABSCISIC ACID INSENSITIVE 5 Is mediated by the RING-type E3 ligase KEEP ON GOING. Journal of Biological Chemistry 288:20267−79 doi: 10.1074/jbc.M113.465369 |
[38] |
Figueiredo DD, Batista RA, Roszak PJ, Köhler C. 2015. Auxin production couples endosperm development to fertilization. Nature Plants 1:15184 doi: 10.1038/nplants.2015.184 |
[39] |
Batista RA, Figueiredo DD, Santos-González J, Köhler C. 2019. Auxin regulates endosperm cellularization in Arabidopsis. Genes & Development 33:466−76 doi: 10.1101/gad.316554.118 |
[40] |
Hehenberger E, Kradolfer D, Köhler C. 2012. Endosperm cellularization defines an important developmental transition for embryo development. Development 139:2031−39 doi: 10.1242/dev.077057 |
[41] |
Roszak P, Köhler C. 2011. Polycomb group proteins are required to couple seed coat initiation to fertilization. PNAS 108:20826−31 doi: 10.1073/pnas.1117111108 |
[42] |
Li YJ, Yu Y, Liu X, Zhang XS, Su YH. 2021. The Arabidopsis MATERNAL EFFECT EMBRYO ARREST45 protein modulates maternal auxin biosynthesis and controls seed size by inducing AINTEGUMENTA. The Plant cell 33:1907−26 doi: 10.1093/plcell/koab084 |
[43] |
Kradolfer D, Hennig L, Köhler C. 2013. Increased maternal genome dosage bypasses the requirement of the FIS polycomb repressive complex 2 in Arabidopsis seed development. PLoS Genetics 9:e1003163 doi: 10.1371/journal.pgen.1003163 |
[44] |
Guo L, Luo X, Li M, Joldersma D, Plunkert M, et al. 2022. Mechanism of fertilization-induced auxin synthesis in the endosperm for seed and fruit development. Nature Communications 13:3985 doi: 10.1038/s41467-022-31656-y |
[45] |
Abu-Zaitoon YM, Bennett K, Normanly J, Nonhebel HM. 2012. A large increase in IAA during development of rice grains correlates with the expression of tryptophan aminotransferase OsTAR1 and a grain-specificYUCCA. Physiologia Plantarum 146:487−99 doi: 10.1111/j.1399-3054.2012.01649.x |
[46] |
Xu X, E Z, Zhang D, Yun Q, Zhou Y, et al. 2021. OsYUC11-mediated auxin biosynthesis is essential for endosperm development of rice. Plant Physiology 185:934−50 doi: 10.1093/plphys/kiaa057 |
[47] |
Bernardi J, Lanubile A, Li QB, Kumar D, Kladnik A, et al. 2012. Impaired auxin biosynthesis in the defective endosperm18 mutant is due to mutational loss of expression in the ZmYUC1 gene encoding endosperm-epecific YUCCA1 protein in maize. Plant Physiology 160:1318−28 doi: 10.1104/pp.112.204743 |
[48] |
Sabelli PA, Larkins BA. 2009. The contribution of cell cycle regulation to endosperm development. Sexual Plant Reproduction 22:207−19 doi: 10.1007/s00497-009-0105-4 |
[49] |
Lur HS, Setter TL. 1993. Role of auxin in maize endosperm development (Timing of nuclear DNA endoreduplication, zein expression, and cytokinin). Plant Physiology 103:273−80 doi: 10.1104/pp.103.1.273 |
[50] |
Müller B, Sheen J. 2008. Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453:1094−7 doi: 10.1038/nature06943 |
[51] |
Figueiredo DD, Köhler C. 2018. Auxin: a molecular trigger of seed development. Genes & Development 32:479−90 doi: 10.1101/gad.312546.118 |
[52] |
Zheng X, Gehring M. 2019. Low-input chromatin profiling in Arabidopsis endosperm using CUT&RUN. Plant Reproduction 32:63−75 doi: 10.1007/s00497-018-00358-1 |
[53] |
Cheng X, Pan M, E Z, Zhou Y, Niu B, Chen C. 2021. The maternally expressed polycomb group gene OsEMF2a is essential for endosperm cellularization and imprinting in rice. Plant Communications 2:100092 doi: 10.1016/j.xplc.2020.100092 |
[54] |
Jameson PE, Song J. 2016. Cytokinin: a key driver of seed yield. Journal of Experimental Botany 67:593−606 doi: 10.1093/jxb/erv461 |
[55] |
Day RC, Herridge RP, Ambrose BA, Macknight RC. 2008. Transcriptome analysis of proliferating Arabidopsis endosperm reveals biological implications for the control of syncytial division, cytokinin signaling, and gene expression regulation. Plant Physiology 148:1964−84 doi: 10.1104/pp.108.128108 |
[56] |
Belmonte MF, Kirkbride RC, Stone SL, Pelletier JM, Bui AQ, et al. 2013. Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed. PNAS 110:E435−E444 doi: 10.1073/pnas.1222061110 |
[57] |
Brugière N, Humbert S, Rizzo N, Bohn J, Habben JE. 2008. A member of the maize isopentenyl transferase gene family, Zea mays isopentenyl transferase 2 (ZmIPT2), encodes a cytokinin biosynthetic enzyme expressed during kernel development. Plant Molecular Biology 67:215−29 doi: 10.1007/s11103-008-9312-x |
[58] |
Brugière N, Jiao S, Hantke S, Zinselmeier C, Roessler JA, et al. 2003. Cytokinin oxidase gene expression in maize is localized to the vasculature, and is induced by cytokinins, abscisic acid, and abiotic stress. Plant Physiology 132:1228−40 doi: 10.1104/pp.102.017707 |
[59] |
Rijavec T, Jain M, Dermastia M, Chourey PS. 2011. Spatial and temporal profiles of cytokinin biosynthesis and accumulation in developing caryopses of maize. Annals of Botany 107:1235−45 doi: 10.1093/aob/mcq247 |
[60] |
Weng J, Li B, Liu C, Yang X, Wang H, et al. 2013. A non-synonymous SNP within the isopentenyl transferase 2 locus is associated with kernel weight in Chinese maize inbreds (Zea mays L.). BMC Plant Biology 13:98 doi: 10.1186/1471-2229-13-98 |
[61] |
Deng Y, Dong H, Mu J, Ren B, Zheng B, et al. 2010. Arabidopsis histidine kinase CKI1 acts upstream of histidine phosphotransfer proteins to regulate female gametophyte development and vegetative growth. The Plant Cell 22:1232−48 doi: 10.1105/tpc.108.065128 |
[62] |
Riefler M, Novak O, Strnad M, Schmülling T. 2006. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. The Plant Cell 18:40−54 doi: 10.1105/tpc.105.037796 |
[63] |
Hutchison CE, Li J, Argueso C, Gonzalez M, Lee E, et al. 2006. The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling. The Plant Cell 18:3073−87 doi: 10.1105/tpc.106.045674 |
[64] |
Argyros RD, Mathews DE, Chiang YH, Palmer CM, Thibault DM, et al. 2008. Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development. The Plant cell 20:2102−16 doi: 10.1105/tpc.108.059584 |
[65] |
Sornay E, Forzani C, Forero-Vargas M, Dewitte W, Murray JA. 2015. Activation of CYCD7;1 in the central cell and early endosperm overcomes cell-cycle arrest in the Arabidopsis female gametophyte, and promotes early endosperm and embryo development. The Plant Journal 84:41−55 doi: 10.1111/tpj.12957 |
[66] |
Daskalova S, McCormac A, Scott N, Van Onckelen H, Elliott M. 2007. Effect of seed-specific expression of the IPT gene on Nicotiana tabacum L. seed composition. Plant Growth Regulation 51:217−29 doi: 10.1007/s10725-006-9162-y |
[67] |
Jiang WB, Lin WH. 2013. Brassinosteroid functions in Arabidopsis seed development. Plant Signaling & Behavior 8:e25928 doi: 10.4161/psb.25928 |
[68] |
Xiong M, Feng G, Gao Q, Zhang C, Li Q. 2022. Brassinosteroid regulation in rice seed biology. Seed Biology 1:2 doi: 10.48130/seedbio-2022-0002 |
[69] |
Jiang W, Huang H, Hu Y, Zhu S, Wang Z, et al. 2013. Brassinosteroid regulates seed size and shape in Arabidopsis. Plant Physiology 162:1965−77 doi: 10.1104/pp.113.217703 |
[70] |
Kim Y, Kim SH, Shin DM, Kim SH. 2021. ATBS1-INTERACTING FACTOR 2 negatively modulates pollen production and seed formation in Arabidopsis. Frontiers in Plant Science 12:704958 doi: 10.3389/fpls.2021.704958 |
[71] |
Kim Y, Song JH, Park SU, Jeong YS, Kim SH. 2017. Brassinosteroid-induced transcriptional repression and dephosphorylation-dependent protein degradation negatively regulate BIN2-Interacting AIF2 (a BR signaling-negative regulator) bHLH transcription factor. Plant and Cell Physiology 58:227−39 doi: 10.1093/pcp/pcw223 |
[72] |
Wu C, Trieu A, Radhakrishnan P, Kwok SF, Harris S, et al. 2008. Brassinosteroids regulate grain filling in rice. The Plant Cell 20:2130−45 doi: 10.1105/tpc.107.055087 |
[73] |
Zhang X, Sun J, Cao X, Song X. 2015. Epigenetic mutation of RAV6 affects leaf angle and seed size in rice. Plant Physiology 169:2118−28 doi: 10.1104/pp.15.00836 |
[74] |
Lefebvre V, North H, Frey A, Sotta B, Seo M, et al. 2006. Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. The Plant Journal 45:309−19 doi: 10.1111/j.1365-313X.2005.02622.x |
[75] |
Zhang XF, Tong JH, Bai AN, Liu CM, Xiao LT, et al. 2020. Phytohormone dynamics in developing endosperm influence rice grain shape and quality. Journal of Integrative Plant Biology 62:1625−37 doi: 10.1111/jipb.12927 |
[76] |
Shin HY, Nam KH. 2018. RAV1 negatively regulates seed development by directly repressing MINI3 and IKU2 inArabidopsis. Molecules and Cells 41:1072−80 doi: 10.14348/molcells.2018.0259 |
[77] |
Fu M, Kang HK, Son SH, Kim SK, Nam KH. 2014. A subset of Arabidopsis RAV transcription factors modulates drought and salt stress responses independent of ABA. Plant and Cell Physiology 55:1892−904 doi: 10.1093/pcp/pcu118 |
[78] |
Sun Y, Fan XY, Cao DM, Tang W, He K, et al. 2010. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Developmental Cell 19:765−77 doi: 10.1016/j.devcel.2010.10.010 |
[79] |
He JX, Gendron JM, Sun Y, Gampala SS, Gendron N, et al. 2005. BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307:1634−8 doi: 10.1126/science.1107580 |
[80] |
Feng CZ, Chen Y, Wang C, Kong YH, Wu WH, et al. 2014. Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development. Plant J 80:654−68 doi: 10.1111/tpj.12670 |
[81] |
Swain SM, Reid JB, Kamiya Y. 1997. Gibberellins are required for embryo growth and seed development in pea. The Plant Journal 12:1329−38 doi: 10.1046/j.1365-313x.1997.12061329.x |
[82] |
Weier D, Thiel J, Kohl S, Tarkowská D, Strnad M, et al. 2014. Gibberellin-to-abscisic acid balances govern development and differentiation of the nucellar projection of barley grains. Journal of Experimental Botany 65:5291−304 doi: 10.1093/jxb/eru289 |
[83] |
Ye H, Feng J, Zhang L, Zhang J, Mispan MS, et al. 2015. Map-based cloning of seed dormancy1-2 identified a gibberellin synthesis gene regulating the development of endosperm-imposed dormancy in rice. Plant Physiology 169:2152−65 doi: 10.1104/pp.15.01202 |
[84] |
Davière JM, Achard P. 2016. A pivotal role of DELLAs in regulating multiple hormone signals. Molecular Plant 9:10−20 doi: 10.1016/j.molp.2015.09.011 |
[85] |
Varotto S, Locatelli S, Canova S, Pipal A, Motto M, et al. 2003. Expression profile and cellular localization of maize Rpd3-type histone deacetylases during plant development. Plant Physiology 133:606−17 doi: 10.1104/pp.103.025403 |
[86] |
Rossi V, Locatelli S, Varotto S, Donn G, Pirona R, et al. 2007. Maize histone deacetylase hda101 is involved in plant development, gene transcription, and sequence-specific modulation of histone modification of genes and repeats. The Plant Cell 19:1145−62 doi: 10.1105/tpc.106.042549 |
[87] |
Yang H, Liu X, Xin M, Du J, Hu Z, et al. 2016. Genome-wide mapping of targets of maize histone deacetylase HDA101 reveals its function and regulatory mechanism during seed development. The Plant Cell 28:629−45 doi: 10.1105/tpc.15.00691 |
[88] |
Simonini S, Bemer M, Bencivenga S, Gagliardini V, Pires ND, et al. 2021. The Polycomb group protein MEDEA controls cell proliferation and embryonic patterning in Arabidopsis. Developmental Cell 56:1945−1960.E7 doi: 10.1016/j.devcel.2021.06.004 |
[89] |
Tonosaki K, Kinoshita T. 2015. Possible roles for polycomb repressive complex 2 in cereal endosperm. Frontiers in Plant Science 6:144 doi: 10.3389/fpls.2015.00144 |
[90] |
Liu X, Wei X, Sheng Z, Jiao G, Tang S, et al. 2016. Polycomb protein OsFIE2 affects plant height and grain yield in rice. PLoS One 11:e0164748 doi: 10.1371/journal.pone.0164748 |
[91] |
Li S, Zhou B, Peng X, Kuang Q, Huang X, et al. 2014. OsFIE2 plays an essential role in the regulation of rice vegetative and reproductive development. New Phytologist 201:66−79 doi: 10.1111/nph.12472 |
[92] |
Luo M, Platten D, Chaudhury A, Peacock WJ, Dennis ES. 2009. Expression, imprinting, and evolution of rice homologs of the polycomb group genes. Molecular Plant 2:711−23 doi: 10.1093/mp/ssp036 |
[93] |
Nallamilli BRR, Zhang J, Mujahid H, Malone BM, Bridges SM, et al. 2013. Polycomb group gene OsFIE2 regulates rice (Oryza sativa) seed development and grain filling via a mechanism distinct from Arabidopsis. PLoS Genetics 9:e1003322 doi: 10.1371/journal.pgen.1003322 |
[94] |
Folsom JJ, Begcy K, Hao XJ, Wang D, Walia H. 2014. Rice Fertilization-Independent Endosperm1 regulates seed size under heat stress by controlling early endosperm development. Plant Physiology 165:238−48 doi: 10.1104/pp.113.232413 |
[95] |
Tonosaki K, Ono A, Kunisada M, Nishino M, Nagata H, et al. 2020. Mutation of the imprinted gene OsEMF2a induces autonomous endosperm development and delayed cellularization in rice. The Plant Cell 33:85−103 doi: 10.1093/plcell/koaa006 |
[96] |
Köhler C, Hennig L, Spillane C, Pien S, Gruissem W, et al. 2003. The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box genePHERES1. Genes & Development 17:1540−53 doi: 10.1101/gad.257403 |
[97] |
Wang Y, Jiang H, Wang G. 2020. PHERES1 controls endosperm gene imprinting and seed development. Trends in Plant Science 25:517−19 doi: 10.1016/j.tplants.2020.03.004 |
[98] |
Batista RA, Moreno-Romero J, Qiu Y, van Boven J, Santos-González J, et al. 2019. The MADS-box transcription factor PHERES1 controls imprinting in the endosperm by binding to domesticated transposons. eLife 8:e50541 doi: 10.7554/eLife.50541 |
[99] |
de Folter S, Immink RGH, Kieffer M, Pařenicová L, Henz SR, et al. 2005. Comprehensive interaction map of the Arabidopsis MADS Box transcription factors. The Plant Cell 17:1424−33 doi: 10.1105/tpc.105.031831 |
[100] |
Wu J, Mohamed D, Dowhanik S, Petrella R, Gregis V, et al. 2020. Spatiotemporal restriction of FUSCA3 expression by class I BPCs promotes ovule development and coordinates embryo and endosperm growth. The Plant Cell 32:1886−904 doi: 10.1105/tpc.19.00764 |