[1]

Yagi M, Kosugi S, Hirakawa H, Ohmiya A, Tanase K, et al. 2014. Sequence Analysis of the Genome of Carnation (Dianthus caryophyllus L.). DNA Research 21:231−41

doi: 10.1093/dnares/dst053
[2]

Kondo M, Nakajima T, Shibuya K, Ichimura K. 2020. Comparison of petal senescence between cut and intact carnation flowers using potted plants. Scientia Horticulturae 272:109564

doi: 10.1016/j.scienta.2020.109564
[3]

Tanase OK, Satoh T, Shibata S, Ichimura M. 2008. Differential expression levels of ethylene biosynthetic pathway genes during senescence of long-lived carnation cultivars. Postharvest Biology and Technology 47:210−7

doi: 10.1016/j.postharvbio.2007.06.023
[4]

Wang L, Zhang F, Qiao H. 2020. Chromatin regulation in the response of ethylene: Nuclear events in ethylene signaling. Small Methods 4:1900288

doi: 10.1002/smtd.201900288
[5]

Bleecker AB. 2000. ETHYLENE: A Gaseous Signal Molecule in Plants. Annual Review of Cell and Developmental Biology 16:1−18

doi: 10.1146/annurev.cellbio.16.1.1
[6]

van Doorn WG, Woltering EJ. 2008. Physiology and molecular biology of petal senescence. Journal of Experimental Botany 59:453−80

doi: 10.1093/jxb/erm356
[7]

Zhang F, Qi B, Wang L, Zhao B, Rode S, et al. 2016. EIN2-dependent regulation of acetylation of histone H3K14 and non-canonical histone H3K23 in ethylene signalling. Nature Communications 7:13018

doi: 10.1038/ncomms13018
[8]

Zhang F, Wang L, Qi B, Zhao B, Ko EE, et al. 2017. EIN2 mediates direct regulation of histone acetylation in the ethylene response. PNAS 114:10274−79

doi: 10.1073/pnas.1707937114
[9]

Zhang F, Wang L, Ko EE, Shao K, Qiao H. 2018. Histone deacetylases SRT1 and SRT2 interact with ENAP1 to mediate ethylene-induced transcriptional repression. The Plant Cell 30:153−66

doi: 10.1105/tpc.17.00671
[10]

Wang L, Zhang F, Rode S, Chin KK, Ko EE, et al. 2017. Ethylene induces combinatorial effects of histone H3 acetylation in gene expression in Arabidopsis. BMC Genomics 18:538

doi: 10.1186/s12864-017-3929-6
[11]

Wang L, Zhang Z, Zhang F, Shao Z, Zhao B, et al. 2021. EIN2-directed histone acetylation requires EIN3-mediated positive feedback regulation in response to ethylene. The Plant Cell 33:322−37

doi: 10.1093/plcell/koaa029
[12]

Woodson WR, Lawton KA. 1988. Ethylene-induced gene expression in carnation petals: : Relationship to autocatalytic ethylene production and senescence. Plant Physiology 87:498−503

doi: 10.1104/pp.87.2.498
[13]

Verlinden S, Boatright J, Woodson WR. 2002. Changes in ethylene responsiveness of senescence-related genes during carnation flower development. Physiologia Plantarum 116:503−11

doi: 10.1034/j.1399-3054.2002.1160409.x
[14]

Yang SF, Hoffman NE. 1984. Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology 35:155−89

doi: 10.1146/annurev.pp.35.060184.001103
[15]

Xu H, Luo D, Zhang F. 2021. DcWRKY75 promotes ethylene induced petal senescence in carnation (Dianthus caryophyllus L.). The Plant Journal 108:1473−92

doi: 10.1111/tpj.15523
[16]

Wang Y, Sun Z, Feng S, Yuan X, Zhong L, et al. 2022. The Negative Regulation of DcERF-1 on Senescence of Cut Carnation. Acta Horticulturae Sinica 49:1313−26

doi: 10.16420/j.issn.0513-353x.2021-0478
[17]

Xu H, Wang S, Larkin RM, Zhang F. 2022. The transcription factors DcHB30 and DcWRKY75 antagonistically regulate ethylene-induced petal senescence in carnation (Dianthus caryophyllus). Journal of Experimental Botany 73:7326−43

doi: 10.1093/jxb/erac357
[18]

Wang T, Sun Z, Wang S, Feng S, Wang R, et al. 2023. DcWRKY33 promotes petal senescence in carnation (Dianthus caryophyllus L.) by activating genes involved in the biosynthesis of ethylene and abscisic acid and accumulation of reactive oxygen species. The Plant Journal

doi: 10.1111/tpj.16075
[19]

Feng S, Jiang X, Wang R, Tan H, Zhong L, et al. 2023. Histone H3K4 methyltransferase DcATX1 promotes ethylene induced petal senescence in carnation. Plant Physiology Accepted:kiad008

doi: 10.1093/plphys/kiad008
[20]

In BC, Binder BM, Falbel TG, Patterson SE. 2016. Recovery of ethylene sensitivity and responses in carnation petals post-treatment with 1-methylcyclopropene. Postharvest Biology and Technology 121:78−86

doi: 10.1016/j.postharvbio.2016.07.010
[21]

Ma N, Ma C, Liu Y, Shahid MO, Wang C, et al. 2018. Petal senescence: a hormone view. Journal of Experimental Botany 69:719−32

doi: 10.1093/jxb/ery009
[22]

Tanase K, Onozaki T. 2016. Regulation of ethylene- and senescence-related genes in pot carnation flowers during flower senescence. The Horticulture Journal 85:254−63

doi: 10.2503/hortj.MI-093
[23]

Wu MJ, van Doorn WG, Reid MS. 1991. Variation in the senescence of carnation (Dianthus caryophyllus L.) cultivars. I. Comparison of flower life, respiration and ethylene biosynthesis. Scientia Horticulturae 48:99−107

doi: 10.1016/0304-4238(91)90156-S
[24]

Laties GG. 1995. Franklin Kidd, Charles West and F.F. Blackman: The start of modern postharvest physiology. Postharvest Biology and Technology 5:1−10

doi: 10.1016/0925-5214(94)00009-H
[25]

Guo W. 2004. The postharvest behavior and patterns of endogenous ethylene production of cut flower of tree-peony. Master's Degree Dissertation. Beijing Forestry University, China.

[26]

Doi M, Hu Y, Imanishi H. 2000. Water Relations of Cut Roses as Influenced by Vapor Pressure Deficits and Temperatures. Journal of the Japanese Society for Horticultural Science 69:584−89

doi: 10.2503/jjshs.69.584
[27]

Fanourakis D, Carvalho SMP, Almeida DPF, van Kooten O, van Doorn WG, Heuvelink E. 2012. Postharvest water relations in cut rose cultivars with contrasting sensitivity to high relative air humidity during growth. Postharvest Biology and Technology 64:64−73

doi: 10.1016/j.postharvbio.2011.09.016
[28]

In BC, Ha STT, Lee YS, Lim JH. 2017. Relationships between the longevity, water relations, ethylene sensitivity, and gene expression of cut roses. Postharvest Biology and Technology 131:74−83

doi: 10.1016/j.postharvbio.2017.05.003
[29]

Borochov A, Faragher J. 1983. Comparison between ultraviolet irradiation and ethylene effects on senescence parameters in carnation flowers. Plant Physiology 71:536−40

doi: 10.1104/pp.71.3.536
[30]

Kishimoto K, Shibuya K. 2021. Scent emissions and expression of scent emission-related genes: A comparison between cut and intact carnation flowers. Scientia Horticulturae 281:109920

doi: 10.1016/j.scienta.2021.109920
[31]

Negre F, Kish CM, Boatright J, Underwood B, Shibuya K, et al. 2003. Regulation of methylbenzoate emission after pollination in snapdragon and petunia flowers. The Plant Cell 15:2992−3006

doi: 10.1105/tpc.016766
[32]

Underwood BA, Tieman DM, Shibuya K, Dexter RJ, Loucas HM, et al. 2005. Ethylene-regulated floral volatile synthesis in petunia corollas. Plant Physiology 138:255−66

doi: 10.1104/pp.104.051144
[33]

Zhang F, Wang L, Lim JY, Kim T, Pyo Y, et al. 2016. Phosphorylation of CBP20 Links MicroRNA to Root Growth in the Ethylene Response. Plos Genetics 12:e1006437

doi: 10.1371/journal.pgen.1006437
[34]

Zhang F, Tang W, Hedtke B, Zhong L, Liu L, et al. 2014. Tetrapyrrole biosynthetic enzyme protoporphyrinogen IX oxidase 1 is required for plastid RNA editing. PNAS 111:2023−28

doi: 10.1073/pnas.1316183111
[35]

Nomura Y, Morita S, Harada T, Satoh S. 2012. Cloning, characterization and expression of carnation (Dianthus caryophyllus L.) ubiquitin genes and their use as a normalization standard for gene expression analysis in senescing petals. Journal of the Japanese Society for Horticultural Science 81:357−65

doi: 10.2503/jjshs1.81.357
[36]

Fanourakis PD, Savvides R, Macnish A, Sarlikioti AJ, Woltering V, Ernst J. 2013. Sources of vase life variation in cut roses: A review. Postharvest Biology and Technology 78:1−15

doi: 10.1016/j.postharvbio.2012.12.001
[37]

Onozaki T, Tanikawa N, Yagi M, Ikeda H, Sumitomo K, et al. 2006. Breeding of carnations (Dianthus caryophyllus L.) for long vase life and rapid decrease in ethylene sensitivity of flowers after anthesis. Journal of the Japanese Society for Horticultural Science 75:256−63

doi: 10.2503/jjshs.75.256
[38]

Maurel C, Verdoucq L, Luu DT, Santoni V. 2008. Plant aquaporins: membrane channels with multiple integrated functions. Annual Review of Plant Biology 59:595−624

doi: 10.1146/annurev.arplant.59.032607.092734
[39]

Yamane K, Inotsume A, Wada Y, Shimizu A, Hayashi M. 2007. Effects of ethylene inhibitors on indoor quality and longevity in potted carnations. Acta Horticulturae 755:191−96

doi: 10.17660/actahortic.2007.755.23
[40]

Xue J, Li Y, Tan H, Yang F, Ma N, et al. 2008. Expression of ethylene biosynthetic and receptor genes in rose floral tissues during ethylene-enhanced flower opening. Journal of Experimental Botany 59:2161−69

doi: 10.1093/jxb/ern078
[41]

Solano R, Stepanova A, Chao Q, Ecker JR. 1998. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes & Development 12:3703−14

doi: 10.1101/gad.12.23.3703
[42]

Hahn A, Harter K. 2009. Mitogen-activated protein kinase cascades and ethylene: signaling, biosynthesis, or both? Plant Physiology 149:1207−10

doi: 10.1104/pp.108.132241
[43]

In BC, Binder BM, Falbel TG, Patterson S. 2013. Analysis of gene expression during the transition to climacteric phase in carnation flowers (Dianthus caryophyllus L.). Journal of Experimental Botany 64:4923−37

doi: 10.1093/jxb/ert281
[44]

Schade F, Legge RL, Thompson JE. 2001. Fragrance volatiles of developing and senescing carnation flowers. Phytochemistry 56:703−10

doi: 10.1016/S0031-9422(00)00483-0