[1]

Brody H. 2019. Tea. Nature 566:S1

doi: 10.1038/d41586-019-00394-5
[2]

Hazarika LK, Bhuyan M, Hazarika BN. 2009. Insect pests of tea and their management. Annual Review of Entomology 54:267−84

doi: 10.1146/annurev.ento.53.103106.093359
[3]

Qin D, Zhang L, Xiao Q, Dietrich C, Matsumura M. 2015. Clarification of the identity of the tea green leafhopper based on morphological comparison between Chinese and Japanese specimens. PLoS One 10:e139202

doi: 10.1371/journal.pone.0139202
[4]

Yang Z, Wu S, Gu D. 2022. Research progress on effects of tea green leafhopper infestation on tea plant growth and tea leaf quality. Journal of Tea Communication 49:1−11

doi: 10.3969/j.issn.1009-525X.2022.01.001
[5]

Zeng L, Wang P, Xu M. 2001. Studies on the resistance of tea plant to leafhopper (Empoasca vitis Gothe). Journal of Tea Science 21:90−93

[6]

Jin S, Ren Q, Lian L, Cai X, Bian L, et al. 2020. Comparative transcriptomic analysis of resistant and susceptible tea cultivars in response to Empoasca onukii (Matsuda) damage. Planta 252:10

doi: 10.1007/s00425-020-03407-0
[7]

Zhao X, Chen S, Wang S, Shan W, Wang X. et al. 2020. Defensive responses of tea plants (Camellia sinensis) against tea green leafhopper attack: A multi-omics study. Frontiers in Plant Science 10:1705

doi: 10.3389/fpls.2019.01705
[8]

Jin S, Sun X, Chen Z, Xiao B. 2012. Resistance of different tea cultivars to Empoasca vitis Göthe. Scientia Agricultura Sinica 45:255−65

[9]

Yang C, Meng Z, Li S, Guo Y, Liang S. et al. 2021. Population dynamics of Dendrothrips minowai Priesner and Empoasca onukii Matsuda and host resistance of major tea varieties in Guizhou. Journal of Southern Agriculture 52:671−81

doi: 10.3969/j.issn.2095-1191.2021.03.015
[10]

Zhang J, Xing Y, Han T, Yu G, Sun X. 2022. Research progress of induced defense against insect pests in tea plant (Camellia sinensis). Acta Entomologica Sinica 65(3):399−408

doi: 10.16380/j.kcxb.2022.03.014
[11]

Cai X, Sun X, Dong W, Wang G, Chen Z. 2014. Herbivore species, infestation time, and herbivore density affect induced volatiles in tea plants. Chemoecology 24:1−14

doi: 10.1007/s00049-013-0141-2
[12]

Miao J. 2008. Studies on defensive mechanism of tea plant induced by exogenous MeSA to tea green leafhopper. PhD Thesis. Chinese Acadamy of Agricultural Sciences, China

[13]

Miao J, Han B. 2011. Effects of exogenous methyl salicylate (MeSA) on major pests and their natural enemies in tea plantations. Chinese Journal of Ecology 30:564−68

[14]

Xin Z, Ge L, Chen S, Sun X. 2019. Enhanced transcriptome responses in herbivore-infested tea plants by the green leaf volatile (Z)-3-hexenol. Journal of Plant Research 132:285−93

doi: 10.1007/s10265-019-01094-x
[15]

Liao Y, Tan H, Jian G, Zhou X, Huo L, et al. 2021. Herbivore-induced (Z)-3-Hexen-1-ol is an airborne signal that promotes direct and indirect defenses in tea (Camellia sinensis) under light. Journal of Agricultural and Food Chemistry 69:12608−20

doi: 10.1021/acs.jafc.1c04290
[16]

Zeng L, Liao Y, Li J, Zhou Y, Tang J, et al. 2017. α-Farnesene and ocimene induce metabolite changes by volatile signaling in neighboring tea (Camellia sinensis) plants. Plant Science 264:29−36

doi: 10.1016/j.plantsci.2017.08.005
[17]

Jian G, Jia Y, Li J, Zhou X, Liao Y, et al. 2021. Elucidation of the regular emission mechanism of volatile β-ocimene with anti-insect function from tea plants (Camellia sinensis) exposed to herbivore attack. Journal of Agricultural and Food Chemistry 69:11204−15

doi: 10.1021/acs.jafc.1c03534
[18]

Jing T, Qian X, Du W, Gao T, Li D, et al. 2021. Herbivore-induced volatiles influence moth preference by increasing the β-Ocimene emission of neighbouring tea plants. Plant, Cell & Environment 44:3667−80

doi: 10.1111/pce.14174
[19]

Chen S, Zhang L, Cai X, Li X, Bian L, et al. 2020. (E)-Nerolidol is a volatile signal that induces defenses against insects and pathogens in tea plants. Horticulture Research 7:52

doi: 10.1038/s41438-020-0275-7
[20]

Mei X, Liu X, Zhou Y, Wang X, Zeng L, et al. 2017. Formation and emission of linalool in tea (Camellia sinensis) leaves infested by tea green leafhopper (Empoasca (Matsumurasca) onukii Matsuda). Food Chemistry 237:356−63

doi: 10.1016/j.foodchem.2017.05.124
[21]

Jing T, Du W, Gao T, Wu Y, Zhang N, et al. 2021. Herbivore-induced DMNT catalyzed by CYP82D47 plays an important role in the induction of JA-dependent herbivore resistance of neighboring tea plants. Plant, Cell & Environment 44:1178−91

doi: 10.1111/pce.13861
[22]

Ye M, Liu M, Erb M, Glauser G, Zhang J, et al. 2021. Indole primes defence signalling and increases herbivore resistance in tea plants. Plant, Cell & Environment 44:1165−77

doi: 10.1111/pce.13897
[23]

Yang H, Wang Y, Li L, Li F, He Y, et al. 2019. Transcriptomic and phytochemical analyses reveal root-mediated resource-based defense response to leaf herbivory by Ectropis oblique in tea plant (Camellia sinensis). Journal of Agricultural and Food Chemistry 67:5465−76

doi: 10.1021/acs.jafc.9b00195
[24]

Liao Y, Yu Z, Liu X, Zeng L, Cheng S, et al. 2019. Effect of major tea insect attack on formation of quality-related nonvolatile specialized metabolites in tea (Camellia sinensis) leaves. Journal of Agricultural and Food Chemistry 67:6716−24

doi: 10.1021/acs.jafc.9b01854
[25]

Li X, Zhang J, Lin S, Xing Y, Zhang X, et al. 2022. (+)-Catechin, epicatechin and epigallocatechin gallate are important inducible defensive compounds against Ectropis grisescens in tea plants. Plant, Cell & Environment 45:496−511

doi: 10.1111/pce.14216
[26]

Zhang X, Ran W, Li X, Zhang J, Ye M, et al. 2022. Exogenous application of gallic acid induces the direct defense of tea plant against Ectropis obliqua Caterpillars. Frontiers in Plant Science 13:833489

doi: 10.3389/fpls.2022.833489
[27]

Wang F, Zhang B, Wen D, Liu R, Yao X, et al. 2022. Chromosome-scale genome assembly of Camellia sinensis combined with multi-omics provides insights into its responses to infestation with green leafhoppers. Frontiers in Plant Science 13:1004387

doi: 10.3389/fpls.2022.1004387
[28]

Qiao D, Mi X, An Y, Xie H, Cao K, et al. 2021. Integrated metabolic phenotypes and gene expression profiles revealed the effect of spreading on aroma volatiles formation in postharvest leaves of green tea. Food Research International 149:110680

doi: 10.1016/j.foodres.2021.110680
[29]

Chen T, Chen X, Zhang S, Zhu J, Tang B, et al. 2021. The genome sequence archive family: toward explosive data growth and diverse data types. Genomics, Proteomics & Bioinformatics 19:578−83

doi: 10.1016/j.gpb.2021.08.001
[30]

Xia E, Tong W, Hou Y, An Y, Chen L, et al. 2020. The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation. Molecular Plant 13:1013−26

doi: 10.1016/j.molp.2020.04.010
[31]

Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. 2016. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols 11:1650−67

doi: 10.1038/nprot.2016.095
[32]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

doi: 10.1186/s13059-014-0550-8
[33]

Jin J, Tian F, Yang D, Meng Y, Kong L. et al. 2017. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Research 45:D1040−D1045

doi: 10.1093/nar/gkw982
[34]

Langfelder P, Horvath S. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559

doi: 10.1186/1471-2105-9-559
[35]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ Method. Methods 25:402−8

doi: 10.1006/meth.2001.1262
[36]

Liu H, Li S, Xiao G, Wang Q. 2021. Formation of volatiles in response to tea green leafhopper (Empoasca onukii Matsuda) herbivory in tea plants: a multi-omics study. Plant Cell Reports 40:753−66

doi: 10.1007/s00299-021-02674-9
[37]

Wang F, Pei H, Wen D, Chen Z, Lv H, et al. 2019. Transcriptome analysis of the infection of the leaves of Duyun Maojian tea in response to green leafhopper. Molecular Plant Breeding 17:7357−67

doi: 10.13271/j.mpb.017.007357
[38]

Wang Y, Tang L, Hou Y, Wang P, Yang H, et al. 2016. Differential transcriptome analysis of leaves of tea plant (Camellia sinensis) provides comprehensive insights into the defense responses to Ectropis oblique attack using RNA-Seq. Functional & Integrative Genomics 16:383−98

doi: 10.1007/s10142-016-0491-2
[39]

Wang X, Zhu W, Cheng X, Lu Z, Liu X. et al. 2021. The effects of circadian rhythm on catechin accumulation in tea leaves. Beverage Plant Research 1:8

doi: 10.48130/bpr-2021-0008
[40]

Joo Y, Schuman MC, Goldberg JK, Wissgott A, Kim SG, et al. 2019. Herbivory elicits changes in green leaf volatile production via jasmonate signaling and the circadian clock. Plant, Cell & Environment 42:972−82

doi: 10.1111/pce.13474
[41]

Xiao Y, Tan H, Huang H, Yu J, Zeng L, et al. 2022. Light synergistically promotes the tea green leafhopper infestation-induced accumulation of linalool oxides and their glucosides in tea (Camellia sinensis). Food Chemistry 394:133460

doi: 10.1016/j.foodchem.2022.133460
[42]

Thaler JS, Humphrey PT, Whiteman NK. 2012. Evolution of jasmonate and salicylate signal crosstalk. Trends in Plant Science 17:260−70

doi: 10.1016/j.tplants.2012.02.010
[43]

Danquah A, de Zelicourt A, Colcombet J, Hirt H. 2014. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnology Advances 32:40−52

doi: 10.1016/j.biotechadv.2013.09.006
[44]

Gu D, Wu S, Yu Z, Zeng L, Qian J, et al. 2022. Involvement of histone deacetylase CsHDA2 in regulating (E)-nerolidol formation in tea (Camellia sinensis) exposed to tea green leafhopper infestation. Horticulture Research 9:uhac158

doi: 10.1093/hr/uhac158
[45]

Asselbergh B, Höfte M. 2007. Basal tomato defences to Botrytis cinerea include abscisic acid-dependent callose formation. Physiological & Molecular Plant Pathology 71:33−40

doi: 10.1016/j.pmpp.2007.10.001
[46]

Hao P, Liu C, Wang Y, Chen R, Tang M, et al. 2008. Herbivore-induced callose deposition on the sieve plates of rice: an important mechanism for host resistance. Plant Physiology 146:1810−20

doi: 10.1104/pp.107.111484
[47]

Zeng L, Watanabe N, Yang Z. 2019. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma. Critical Reviews in Food Science and Nutrition 59:2321−34

doi: 10.1080/10408398.2018.1506907
[48]

Wang J, Tong L, Ju X, Luo Z, Xue R, et al. 2021. Progress on the induced defense of tea plants (Camellia sinensis) in response to the attack of tea green leafhopper (Empoasca onukii) and its mechanism. Journal of Fujian Agriculture and Forestry University (Natural Science Edition) 50:145−54

doi: 10.13323/j.cnki.j.fafu(nat.sci.).2021.02.001
[49]

Jiao L, Bian L, Luo Z, Li Z, Xiu C, et al. 2022. Enhanced volatile emissions and anti-herbivore functions mediated by the synergism between jasmonic acid and salicylic acid pathways in tea plants. Horticulture Research 9:uhac144

doi: 10.1093/hr/uhac144
[50]

Wang W, Zheng C, Hao W, Ma C, Ma J, et al. 2018. Transcriptome and metabolome analysis reveal candidate genes and biochemicals involved in tea geometrid defense in Camellia sinensis. PloS One 13:e0201670

doi: 10.1371/journal.pone.0201670
[51]

Xin Z, Cai X, Chen S, Luo Z, Bian L, et al. 2019. A disease resistance elicitor laminarin enhances tea defense against a piercing herbivore Empoasca (Matsumurasca) onukii Matsuda. Scientific Reports 9:814

doi: 10.1038/s41598-018-37424-7
[52]

Dong C, Li F, Yang T, Feng L, Zhang S, et al. 2020. Theanine transporters identified in tea plants (Camellia sinensis L.). The Plant Journal 101:57−70

doi: 10.1111/tpj.14517
[53]

Liu Y, Jiang H, Zhao Y, Li X, Dai X, et al. 2019. Three Camellia sinensis glutathione S-transferases are involved in the storage of anthocyanins, flavonols, and proanthocyanidins. Planta 250:1163−75

doi: 10.1007/s00425-019-03206-2
[54]

Guo Y, Qiao D, Yang C, Chen J, Li Y, et al. 2020. Genome-wide identification and expression analysis of SABATH methyltransferases in tea plant (Camellia sinensis): insights into their roles in plant defense responses. Plant Signaling & Behavior 15:1804684

doi: 10.1080/15592324.2020.1804684
[55]

Jing T, Zhang N, Gao T, Zhao M, Jin J, et al. 2019. Glucosylation of (Z)-3-hexenol informs intraspecies interactions in plants: A case study in Camellia sinensis. Plant, Cell & Environment 42:1352−67

doi: 10.1111/pce.13479
[56]

Zhou Y, Zeng L, Gui J, Liao Y, Li J, et al. 2017. Functional characterizations of β-glucosidases involved in aroma compound formation in tea (Camellia sinensis). Food Research International 96:206−14

doi: 10.1016/j.foodres.2017.03.049