[1]

Saillenfait AM, Ndiaye D, Sabaté JP. 2015. Pyrethroids: Exposure and health effects - An update. International Journal of Hygiene and Environmental Health 218:281−92

doi: 10.1016/j.ijheh.2015.01.002
[2]

Tang W, Wang D, Wang J, Wu Z, Li L, et al. 2018. Pyrethroid pesticide residues in the global environment: An overview. Chemosphere 191:990−1007

doi: 10.1016/j.chemosphere.2017.10.115
[3]

Li HZ, Cheng F, Wei YL, Lydy MJ, You J. 2017. Global occurrence of pyrethroid insecticides in sediment and the associated toxicological effects on benthic invertebrates: An overview. Journal of Hazardous Materials 324:258−71

doi: 10.1016/j.jhazmat.2016.10.056
[4]

Weston DP, Holmes RW, You J, Lydy MJ. 2005. Aquatic toxicity due to residential use of pyrethroid insecticides. Environmental Science and Technology 39:9778−84

doi: 10.1021/es0506354
[5]

Fabro L, Varca LM. 2012. Pesticide usage by farmers in Pagsanjan-Lumban catchment of Laguna de Bay, Philippines. Agricultural Water Management 106:27−34

doi: 10.1016/j.agwat.2011.08.011
[6]

Stehle S, Schulz R. 2015. Agricultural insecticides threaten surface waters at the global scale. PNAS 112:5750−55

doi: 10.1073/pnas.1500232112
[7]

Paul EA, Simonin HA. 2006. Toxicity of three mosquito insecticides to crayfish. Bulletin of Environmental Contamination and Toxicology 76:614−21

doi: 10.1007/s00128-006-0964-4
[8]

Qi X, Zheng M, Wu C, Wang G, Feng C, et al. 2012. Urinary pyrethroid metabolites among pregnant women in an agricultural area of the Province of Jiangsu, China. International Journal of Hygiene and Environmental Health 215:487−95

doi: 10.1016/j.ijheh.2011.12.003
[9]

Wu C, Feng C, Qi X, Wang G, Zheng M, et al. 2013. Urinary metabolite levels of pyrethroid insecticides in infants living in an agricultural area of the Province of Jiangsu in China. Chemosphere 90:2705−13

doi: 10.1016/j.chemosphere.2012.11.050
[10]

Koureas M, Tsakalof A, Tsatsakis A, Hadjichristodoulou C. 2012. Systematic review of biomonitoring studies to determine the association between exposure to organophosphorus and pyrethroid insecticides and human health outcomes. Toxicology Letters 210:155−68

doi: 10.1016/j.toxlet.2011.10.007
[11]

Pérez-Fernández V, García MA, Marina ML. 2010. Characteristics and enantiomeric analysis of chiral pyrethroids. Journal of Chromatography A 1217:968−89

doi: 10.1016/j.chroma.2009.10.069
[12]

Liu W, Gan J. 2004. Separation and analysis of diastereomers and enantiomers of cypermethrin and cyfluthrin by gas chromatography. Journal of Agricultural and Food Chemistry 52:755−61

doi: 10.1021/jf035179m
[13]

Chang J, Xu P, Li W, Li J, Wang H. 2019. Enantioselective elimination and gonadal disruption of lambda-cyhalothrin on lizards (eremias argus). Journal of Agricultural and Food Chemistry 67:2183−89

doi: 10.1021/acs.jafc.8b05990
[14]

Liu W, Qin S, Gan J. 2005. Chiral stability of synthetic pyrethroid insecticides. Journal of Agricultural and Food Chemistry 53:3814−20

doi: 10.1021/jf048425i
[15]

Khazri A, Sellami B, Dellali M, Corcellas C, Eljarrat E, et al. 2016. Diastereomeric and enantiomeric selective accumulation of cypermethrin in the freshwater mussel Unio gibbus and its effects on biochemical parameters. Pesticide Biochemistry and Physiology 129:83−88

doi: 10.1016/j.pestbp.2015.11.001
[16]

Li ZY, Zhang ZC, Zhang L, Leng L. 2008. Stereo and enantioselective degradation of β-Cypermethrin and β-Cyfluthrin in soil. Bulletin of Environmental Contamination and Toxicology 80:335−39

doi: 10.1007/s00128-008-9368-y
[17]

Venugopal V, Gopakumar K. 2017. Shellfish: nutritive value, health benefits, and consumer safety. Comprehensive Reviews in Food Science and Food Safety 16:1219−42

doi: 10.1111/1541-4337.12312
[18]

Cho Y, Shim WJ, Jang M, Han GM, Hong SH. 2019. Abundance and characteristics of microplastics in market bivalves from South Korea. Environmental Pollution 245:1107−16

doi: 10.1016/j.envpol.2018.11.091
[19]

Wang J, Koopman KR, Collas FPL, Posthuma L, de Nijs T, et al. 2021. Towards an ecosystem service-based method to quantify the filtration services of mussels under chemical exposure. Science of the Total Environment 763:144196

doi: 10.1016/j.scitotenv.2020.144196
[20]

Saha S, Halder M, Mookerjee S, Palit A. 2020. Preponderance of multidrug-resistant, toxigenic, and thermotolerant enteropathogenic bacteria in raw and cooked seafood of indo-gangetic basin and associated health risks. Journal of Aquatic Food Product Technology 29:838−49

doi: 10.1080/10498850.2020.1813858
[21]

Alves RN, Maulvault AL, Barbosa VL, Cunha S, Kwadijk CJAF, et al. 2017. Preliminary assessment on the bioaccessibility of contaminants. of emerging concern in raw and cooked seafood. Food and Chemical Toxicology 104:69−78

doi: 10.1016/j.fct.2017.01.029
[22]

Pardee JD, Aspudich J. 1982. Purification of muscle actin. Methods in Enzymology 85:164−81

doi: 10.1016/0076-6879(82)85020-9
[23]

Tobin BD, O'Sullivan MG, Hamill RM, Kerry JP. 2013. The impact of salt and fat level variation on the physiochemical properties and sensory quality of pork breakfast sausages. Meat Science 93:145−52

doi: 10.1016/j.meatsci.2012.08.008
[24]

Brodkorb A, Egger L, Alminger M, Alvito P, Assunção R, et al. 2019. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols 14:991−1014

doi: 10.1038/s41596-018-0119-1
[25]

Minekus M, Alminger M, Alvito P, Ballance S, Bohn T, et al. 2014. A standardised static in vitro digestion method suitable for food - an international consensus. Food and Function 5:1113−24

doi: 10.1039/C3FO60702J
[26]

Sams L, Paume J, Giallo J, Carrière F. 2016. Relevant pH and lipase for in vitro models of gastric digestion. Food and Function 7:30−45

doi: 10.1039/C5FO00930H
[27]

Jiao YD, Liu CE, Feng CS, Regenstein JM, Luo YK, et al. 2021. Bioaccessibility and intestinal transport of deltamethrin in pacific oyster (Magallana gigas) using simulated digestion/NCM460 cell models. Frontiers in Nutrition 8:726620−31

doi: 10.3389/fnut.2021.726620
[28]

Zhang G, Ma Y. 2013. Mechanistic and conformational studies on the interaction of food dye amaranth with human serum albumin by multispectroscopic methods. Food Chemistry 136:442−49

doi: 10.1016/j.foodchem.2012.09.026
[29]

Nishi K, Huang H, Kamita SG, Kim IH, Morisseau C, et al. 2006. Characterization of pyrethroid hydrolysis by the human liver carboxylesterases hCE-1 and hCE-2. Archives of Biochemistry and Biophysics 445:115−23

doi: 10.1016/j.abb.2005.11.005
[30]

Huang H, Fleming CD, Nishi K, Redinbo MR, Hammock BD. 2005. Stereoselective hydrolysis of pyrethroid-like fluorescent substrates by human and other mammalian liver carboxylesterases. Chemical Research in Toxicology 18:1371−77

doi: 10.1021/tx050072+
[31]

Zhu Q, Yang Y, Lao Z, Zhong Y, Zhang K, et al. 2020. Photodegradation kinetics, mechanism and aquatic toxicity of deltamethrin, permethrin and dihaloacetylated heterocyclic pyrethroids. Science of the Total Environment 749:142106

doi: 10.1016/j.scitotenv.2020.142106
[32]

Liu X, Wang P, Liu C, Liang Y, Zhou Z, et al. 2017. Absorption, distribution, metabolism, and in vitro digestion of beta-cypermethrin in laying hens. Journal of Agricultural and Food Chemistry 65:7647−52

doi: 10.1021/acs.jafc.7b02581
[33]

Salelles L, Floury J, Le Feunteun S. 2021. Pepsin activity as a function of pH and digestion time on caseins and egg white proteins under static in vitro conditions. Food and Function 12:12468−78

doi: 10.1039/D1FO02453A
[34]

Wang Y, Zhang G, Yan J, Gong D. 2014. Inhibitory effect of morin on tyrosinase: Insights from spectroscopic and molecular docking studies. Food Chemistry 163:226−33

doi: 10.1016/j.foodchem.2014.04.106
[35]

Qi H, Wang Y, Wang X, Su L, Wang Y, et al. 2021. The different interactions of two anticancer drugs with bovine serum albumin based on multi-spectrum method combined with molecular dynamics simulations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 259:119809

doi: 10.1016/j.saa.2021.119809
[36]

Su H, Xu Y. 2018. Application of ITC-based characterization of thermodynamic and kinetic association of ligands with proteins in drug design. Frontiers in Pharmacology 9:1113

doi: 10.3389/fphar.2018.01133