[1]

Gonçalves Bortolini D, Windson Isidoro Haminiuk C, Cristina Pedro A, de Andrade Arruda Fernandes I, Maria Maciel G. 2021. Processing, chemical signature and food industry applications of Camellia sinensis teas: An overview. Food Chemistry: X 12:100160

doi: 10.1016/j.fochx.2021.100160
[2]

Zhang C, Wang M, Gao X, Zhou F, Shen C, et al. 2020. Multi-omics research in albino tea plants: past, present, and future. Scientia Horticulturae 261:e108943

doi: 10.1016/j.scienta.2019.108943
[3]

Zhao J, Li P, Xia T, Wan X. 2020. Exploring plant metabolic genomics: chemical diversity, metabolic complexity in the biosynthesis and transport of specialized metabolites with the tea plant as a model. Critical Reviews in Biotechnology 40:667−88

doi: 10.1080/07388551.2020.1752617
[4]

Jiang X, Liu Y, Li W, Zhao L, Meng F, et al. 2013. Tissue-specific, development-dependent phenolic compounds accumulation profile and gene expression pattern in tea plant [Camellia sinensis]. PLoS ONE 8:e62315

doi: 10.1371/journal.pone.0062315
[5]

Wei C, Yang H, Wang S, Zhao J, Liu C, et al. 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. PNAS 115:E4151−E4158

doi: 10.1073/pnas.1719622115
[6]

Li M, Liu H, Wu D, Kenaan A, Geng F, et al. 2022. L-theanine: A unique functional amino acid in tea (Camellia sinensis L.) with multiple health benefits and food applications. Frontiers in Nutrition 9:853846

doi: 10.3389/fnut.2022.853846
[7]

Xia EH, Tong W, Wu Q, Wei S, Zhao J, et al. 2020. Tea plant genomics: achievements, challenges and perspectives. Horticulture Research 7:7

doi: 10.1038/s41438-019-0225-4
[8]

Ng KW, Cao ZJ, Chen HB, Zhao ZZ, Zhu L, et al. 2018. Oolong tea: A critical review of processing methods, chemical composition, health effects, and risk. Critical Reviews in Food Science and Nutrition 58:2957−80

doi: 10.1080/10408398.2017.1347556
[9]

Wang W, Zhou Y, Wu Y, Dai X, Liu Y, et al. 2018. Insight into catechins metabolic pathways of Camellia sinensis based on genome and transcriptome analysis. Journal of Agricultural and Food Chemistry 66:4281−93

doi: 10.1021/acs.jafc.8b00946
[10]

Zhang L, Cao Q, Granato D, Xu Y, Ho CT. 2020. Association between chemistry and taste of tea: A review. Trends in Food Science & Technology 101:139−49

doi: 10.1016/j.jpgs.2020.05.015
[11]

Xu N, Chu J, Wang M, Chen L, Zhang L, et al. 2018. Large yellow tea attenuates macrophage-related chronic inflammation and metabolic syndrome in high-fat diet treated mice. Journal of Agricultural and Food Chemistry 66:3823−32

doi: 10.1021/acs.jafc.8b00138
[12]

Xu N, Chu J, Dong R, Lu F, Zhang X, et al. 2021. Yellow tea stimulates thermogenesis in mice through heterogeneous browning of adipose tissues. Molecular Nutrition & Food Research 65:e2000864

doi: 10.1002/mnfr.202000864
[13]

Kan Z, Wang Y, Chen Q, Tang X, Thompson HJ, et al. 2021. Green tea suppresses amyloid β levels and alleviates cognitive impairment by inhibiting APP cleavage and preventing neurotoxicity in 5XFAD mice. Molecular Nutrition & Food Research 65:e2100626

doi: 10.1002/mnfr.202100626
[14]

Zhang Z, Zhang X, Bi K, He Y, Yan W, et al. 2021. Potential protective mechanisms of green tea polyphenol EGCG against COVID-19. Trends in Food Science & Technology 114:11−24

doi: 10.1016/j.jpgs.2021.05.023
[15]

Vuong QV, Bowyer MC, Roach PD. 2011. L-Theanine: properties, synthesis and isolation from tea. Journal of the Science of Food and Agriculture 91:1931−39

doi: 10.1002/jsfa.4373
[16]

Sharma E, Joshi R,Gulati A. 2018. L-Theanine: An astounding sui generis integrant in tea. Food Chemistry 242:601−10

doi: 10.1016/j.foodchem.2017.09.046
[17]

Chen Z, Wang Z, Yuan H, He N. 2021. From tea leaves to factories: A review of research progress in L-theanine biosynthesis and production. Journal of Agricultural and Food Chemistry 69:1187−96

doi: 10.1021/acs.jafc.0c06694
[18]

Yang T, Xie Y, Lu X, Yan X, Wang Y, et al. 2021. Shading promoted theanine biosynthesis in the roots and allocation in the shoots of the tea plant (Camellia sinensis L.) cultivar Shuchazao. Journal of Agricultural and Food Chemistry 69:4795−803

doi: 10.1021/acs.jafc.1c00641
[19]

Kc S, Long L, Liu M, Zhang Q, Ruan J. 2021. Light intensity modulates the effect of phosphate limitation on carbohydrates, amino acids, and catechins in tea plants (Camellia sinensis L.). Frontiers in Plant Science 12:743781

doi: 10.3389/fpls.2021.743781
[20]

Xiang P, Zhu Q, Tukhvatshin M, Cheng B, Tan M, et al. 2021. Light control of catechin accumulation is mediated by photosynthetic capacity in tea plant (Camellia sinensis). BMC Plant Biology 21:478

doi: 10.1186/s12870-021-03260-7
[21]

Liu L, Li Y, She G, Zhang X, Jordan B, et al. 2018. Metabolite profiling and transcriptomic analyses reveal an essential role of UVR8-mediated signal transduction pathway in regulating flavonoid biosynthesis in tea plants (Camellia sinensis) in response to shading. BMC Plant Biology 18:233

doi: 10.1186/s12870-018-1440-0
[22]

Liu L, Lin N, Liu X, Yang S, Wang W, et al. 2020. From chloroplast biogenesis to chlorophyll accumulation: the interplay of light and hormones on gene expression in Camellia sinensis cv. Shuchazao leaves. Frontiers in Plant Science 11:256

doi: 10.3389/fpls.2020.00256
[23]

Ye J, Lv Y, Liu S, Jin J, Wang Y, et al. 2021. Effects of light intensity and spectral composition on the transcriptome profiles of leaves in shade grown tea plants (Camellia sinensis L.) and regulatory network of flavonoid biosynthesis. Molecules 26:5836

doi: 10.3390/molecules26195836
[24]

Jin J, Lv Y, He W, Li D, Ye Y, et al. 2021. Screening the key region of sunlight regulating the flavonoid profiles of young shoots in tea plants (Camellia sinensis L.) based on a field experiment. Molecules 26:7158

doi: 10.3390/molecules26237158
[25]

Zheng C, Ma J, Ma C, Shen S, Liu Y, et al. 2019. Regulation of growth and flavonoid formation of tea plants (Camellia sinensis) by blue and green light. Journal of Agricultural and Food Chemistry 67:2408−19

doi: 10.1021/acs.jafc.8b07050
[26]

Wang Y, Gao L, Shan Y, Liu Y, Tian Y, et al. 2012. Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O. Kuntze). Scientia Horticulturae 141:7−16

doi: 10.1016/j.scienta.2012.04.013
[27]

Ji HG, Lee YR, Lee MS, Hwang KH, Park CY, et al. 2018. Diverse metabolite variations in tea (Camellia sinensis L.) leaves grown under various shade conditions revisited: a metabolomics study. Journal of Agricultural and Food Chemistry 66:1889−97

doi: 10.1021/acs.jafc.7b04768
[28]

Xu P, Su H, Jin R, Mao Y, Xu A, et al. 2020. Shading effects on leaf color conversion and biosynthesis of the major secondary metabolites in the albino tea cultivar "Yujinxiang". Journal of Agricultural and Food Chemistry 68:2528−38

doi: 10.1021/acs.jafc.9b08212
[29]

Fan Y, Zhao X, Wang H, Tian Y, Xiang Q, et al. 2019. Effects of light intensity on metabolism of light-harvesting pigment and photosynthetic system in Camellia sinensis L. cultivar 'Huangjinya'. Environmental and Experimental Botany 166:103796

doi: 10.1016/j.envexpbot.2019.06.009
[30]

Wu Q, Chen Z, Sun W, Deng T, Chen M. 2016. De novo sequencing of the leaf transcriptome reveals complex light-responsive regulatory networks in Camellia sinensis cv. Baijiguan. Frontiers in Plant Science 7:e332

doi: 10.3389/fpls.2016.00332
[31]

Yamashita H, Kambe Y, Ohshio M, Kunihiro A, Tanaka Y, et al. 2021. Integrated metabolome and transcriptome analyses reveal etiolation-induced metabolic changes leading to high amino acid contents in a light-densitive Japanese albino tea cultivar. Frontiers in Plant Science 11:611140

doi: 10.3389/fpls.2020.611140
[32]

Shao C, Jiao H, Chen J, Zhang C, Liu J, et al. 2022. Carbon and nitrogen metabolism are jointly regulated during shading in roots and leaves of Camellia Sinensis. Frontiers in Plant Science 13:894840

doi: 10.3389/fpls.2022.894840
[33]

Yamashita H, Tanaka Y, Umetsu K, Morita S, Ono Y, et al. 2020. Phenotypic markers reflecting the status of overstressed tea plants subjected to repeated shade cultivation. Frontiers in Plant Science 11:556476

doi: 10.3389/fpls.2020.556476
[34]

Liu G, Han Z, Feng L, Gao L, Gao M, et al. 2017. Metabolic flux redirection and transcriptomic reprogramming in the albino tea cultivar 'Yu-Jin-Xiang' with an emphasis on catechin production. Scientific Reports 7:45062

doi: 10.1038/srep45062
[35]

Wang Y, Cheng X, Yang T, Su Y, Lin S, et al. 2021. Nitrogen-regulated theanine and flavonoid biosynthesis in tea plant roots: protein-level regulation revealed by multiomics analyses. Journal of Agricultural and Food Chemistry 69:10002−16

doi: 10.1021/acs.jafc.1c02589
[36]

Zhai X, Zhang L, Granvogl M, Ho CT, Wan X. 2022. Flavor of tea (Camellia sinensis): A review on odorants and analytical techniques. Comprehensive Reviews in Food Science and Food Safety 21:3867−909

doi: 10.1111/1541-4337.12999
[37]

Sano T, Horie H, Matsunaga A, Hirono Y. 2018. Effect of shading intensity on morphological and color traits and on chemical components of new tea (Camellia sinensis L.) shoots under direct covering cultivation. Journal of the Science of Food and Agriculture 98:5666−76

doi: 10.1002/jsfa.9112
[38]

Zhou B, Chen Y, Zeng L, Cui Y, Li J, et al. 2022. Soil nutrient deficiency decreases the postharvest quality-related metabolite contents of tea (Camellia sinensis (L.) Kuntze) leaves. Food Chemistry 377:132003

doi: 10.1016/j.foodchem.2021.132003
[39]

Yang Y, Wang F, Wan Q, Ruan J. 2018. Transcriptome analysis using RNA-Seq revealed the effects of nitrogen form on major secondary metabolite biosynthesis in tea (Camellia sinensis) plants. Acta Physiologiae Plantarum 40:127

doi: 10.1007/s11738-018-2701-0
[40]

Huang H, Yao Q, Xia E, Gao L. 2018. Metabolomics and transcriptomics analyses reveal nitrogen influences on the accumulation of flavonoids and amino acids in young shoots of tea plant (Camellia sinensis L.) associated with tea flavor. Journal of Agricultural and Food Chemistry 66:9828−38

doi: 10.1021/acs.jafc.8b01995
[41]

Wang Y, Wang Y, Lu Y, Qiu Q, Fan D, et al. 2021. Influence of different nitrogen sources on carbon and nitrogen metabolism and gene expression in tea plants (Camellia sinensis L.). Plant Physiology and Biochemistry 167:561−566

doi: 10.1016/j.plaphy.2021.08.034
[42]

Ma L, Jiang S, Deng M, Lv L, Xu Z, et al. 2021. Thermo condition determines the uptake of autumn and winter applied nitrogen and subsequent utilization in spring tea (Camellia sinensis L.). Horticulturae 7:544

doi: 10.3390/horticulturae7120544
[43]

Liu M, Tang D, Shi Y, Ma L, Zhang Q, et al. 2021. Foliar N application on tea plant at its dormancy stage increases the N concentration of mature leaves and improves the quality and yield of spring tea. Frontiers in Plant Science 12:753086

doi: 10.3389/fpls.2021.753086
[44]

Yang T, Li H, Tai Y, Dong C, Cheng X, et al. 2020. Transcriptional regulation of amino acid metabolism in response to nitrogen deficiency and nitrogen forms in tea plant root (Camellia sinensis L.). Scientific Reports 10:6868

doi: 10.1038/s41598-020-63835-6
[45]

Hadfield W. 1976. The effects of high temperatures on some aspects of the physiology and cultivation of the tea bush in Northeast India. Proceedings of the 16th symposium of British Ecological Society. pp. 477−95. https://agris.fao.org/agris-search/search.do?recordID=US201303048500

[46]

Mohotti AJ, Lawlor DW. 2002. Diurnal variation of photosynthesis and photoinhibition in tea: effects of irradiance and nitrogen supply during growth in the field. Journal of Experimental Botany 53:313−22

doi: 10.1093/jexbot/53.367.313
[47]

Hayes S, Velanis CN, Jenkins GI, Franklin KA. 2014. UV-B detected by the UVR8 photoreceptor antagonizes auxin signaling and plant shade avoidance. PNAS 111:11894−99

doi: 10.1073/pnas.1403052111
[48]

Galvão VC, Fankhauser C. 2015. Sensing the light environment in plants: photoreceptors and early signaling steps. Current Opinion in Neurobiology 34:46−53

doi: 10.1016/j.conb.2015.01.013