[1]

Mizutani M, Ohta D. 2010. Diversification of P450 genes during land plant evolution. Annual Review of Plant Biology 61:291−315

doi: 10.1146/annurev-arplant-042809-112305
[2]

Hansen CC, Nelson DR, Møller BL, Werck-Reichhart D. 2021. Plant cytochrome P450 plasticity and evolution. Molecular Plant 14:1244−65

doi: 10.1016/j.molp.2021.06.028
[3]

Nelson D, Werck-Reichhart D. 2011. A P450-centric view of plant evolution. The Plant Journal 66:194−211

doi: 10.1111/j.1365-313X.2011.04529.x
[4]

Adamski NM, Anastasiou E, Eriksson S, O'Neill CM, Lenhard M. 2009. Local maternal control of seed size by KLUH/CYP78A5-dependent growth signaling. PNAS 106:20115−20

doi: 10.1073/pnas.0907024106
[5]

Anastasiou E, Kenz S, Gerstung M, MacLean D, Timmer J, et al. 2007. Control of plant organ size by KLUH/CYP78A5-dependent intercellular signaling. Developmental Cell 13:843−56

doi: 10.1016/j.devcel.2007.10.001
[6]

Jiang L, Yoshida T, Stiegert S, Jing Y, Alseekh S, et al. 2021. Multi-omics approach reveals the contribution of KLU to leaf longevity and drought tolerance. Plant Physiology 185:352−68

doi: 10.1093/plphys/kiaa034
[7]

Wang J, Schwab R, Czech B, Mica E, Weigel D. 2008. Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. The Plant Cell 20:1231−43

doi: 10.1105/tpc.108.058180
[8]

Poretska O, Yang S, Pitorre D, Poppenberger B, Sieberer T. 2020. AMP1 and CYP78A5/7 act through a common pathway to govern cell fate maintenance in Arabidopsis thaliana. PLoS Genetics 16:e1009043

doi: 10.1371/journal.pgen.1009043
[9]

Nobusawa T, Kamei M, Ueda H, Matsushima N, Yamatani H, et al. 2021. Highly pleiotropic functions of CYP78As and AMP1 are regulated in non-cell-autonomous/organ-specific manners. Plant Physiology 186:767−81

doi: 10.1093/plphys/kiab067
[10]

Fang W, Wang Z, Cui R, Li J, Li Y. 2012. Maternal control of seed size by EOD3/CYP78A6 in Arabidopsis thaliana. The Plant Journal 70:929−39

doi: 10.1111/j.1365-313X.2012.04907.x
[11]

Chakrabarti M, Zhang N, Sauvage C, Muños S, Blanca J, et al. 2013. A cytochrome P450 regulates a domestication trait in cultivated tomato. PNAS 110:17125−30

doi: 10.1073/pnas.1307313110
[12]

Li Q, Chakrabarti M, Taitano NK, Okazaki Y, Saito K, et al. 2021. Differential expression of SlKLUH controlling fruit and seed weight is associated with changes in lipid metabolism and photosynthesis-related genes. Journal of Experimental Botany 72:1225−44

doi: 10.1093/jxb/eraa518
[13]

Li Q, Feng Q, Snouffer A, Zhang B, Rodríguez GR, et al. 2022. Increasing fruit weight by editing a cis-regulatory element in tomato KLUH promoter using CRISPR/Cas9. Frontiers in Plant Science 13:879642

doi: 10.3389/fpls.2022.879642
[14]

Alonge M, Wang X, Benoit M, Soyk S, Pereira L, et al. 2020. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell 182:145−161.e23

doi: 10.1016/j.cell.2020.05.021
[15]

Sun X, Cahill J, Van Hautegem T, Feys K, Whipple C, et al. 2017. Altered expression of maize PLASTOCHRON1 enhances biomass and seed yield by extending cell division duration. Nature Communications 8:14752

doi: 10.1038/ncomms14752
[16]

Guo L, Ma M, Wu L, Zhou M, Li M, et al. 2022. Modified expression of TaCYP78A5 enhances grain weight with yield potential by accumulating auxin in wheat (Triticum aestivum L.). Plant Biotechnology Journal 20:168−82

doi: 10.1111/pbi.13704
[17]

Zhou M, Peng H, Wu L, Li M, Guo L, et al. 2022. TaKLU plays as a time regulator of leaf growth via auxin signaling. International Journal of Molecular Sciences 23:4219

doi: 10.3390/ijms23084219
[18]

Wang X, Li Y, Zhang H, Sun G, Zhang W, et al. 2015. Evolution and association analysis of GmCYP78A10 gene with seed size/weight and pod number in soybean. Molecular Biology Reports 42:489−96

doi: 10.1007/s11033-014-3792-3
[19]

Dai AH, Yang SX, Zhou HK, Tang KQ, Li G, et al. 2018. Evolution and expression divergence of the CYP78A subfamily genes in soybean. Genes 9:611

doi: 10.3390/genes9120611
[20]

Zhao B, Dai A, Wei H, Yang S, Wang B, et al. 2016. Arabidopsis KLU homologue GmCYP78A72 regulates seed size in soybean. Plant Molecular Biology 90:33−47

doi: 10.1007/s11103-015-0392-0
[21]

Qi X, Liu C, Song L, Li Y, Li M. 2017. PaCYP78A9, a cytochrome P450, regulates fruit size in sweet cherry (Prunus avium L. ). Frontiers in Plant Science 8:2076

doi: 10.3389/fpls.2017.02076
[22]

Dong Y, Qi X, Liu C, Song L, Ming L. 2022. A sweet cherry AGAMOUS-LIKE transcription factor PavAGL15 affects fruit size by directly repressing the PavCYP78A9 expression. Scientia Horticulturae 297:110947

doi: 10.1016/j.scienta.2022.110947
[23]

Nagasawa N, Hibara KI, Heppard EP, Vander Velden KA, Luck S, et al. 2013. GIANT EMBRYO encodes CYP78A13, required for proper size balance between embryo and endosperm in rice. The Plant Journal 75:592−605

doi: 10.1111/tpj.12223
[24]

Yang W, Gao M, Yin X, Liu J, Xu Y, et al. 2013. Control of rice embryo development, shoot apical meristem maintenance, and grain yield by a novel cytochrome p450. Molecular Plant 6:1945−60

doi: 10.1093/mp/sst107
[25]

Yarmohammadi F, Ghasemzadeh Rahbardar M, Hosseinzadeh H. 2021. Effect of eggplant (Solanum melongena) on the metabolic syndrome: A review. Iranian Journal of Basic Medical Sciences 24:420−27

[26]

Ogunsuyi OB, Olagoke OC, Afolabi BA, Loreto JS, Ademiluyi AO, et al. 2022. Effect of Solanum vegetables on memory index, redox status, and expressions of critical neural genes in Drosophila melanogaster model of memory impairment. Metabolic Brain Disease 37:729−41

doi: 10.1007/s11011-021-00871-9
[27]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202

doi: 10.1016/j.molp.2020.06.009
[28]

Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al. 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research 37:W202−W208

doi: 10.1093/nar/gkp335
[29]

Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, et al. 2009. Circos: an information aesthetic for comparative genomics. Genome Research 19:1639−45

doi: 10.1101/gr.092759.109
[30]

Wang Y, Tang H, DeBarry JD, Tan X, Li J, et al. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research 40:e49

doi: 10.1093/nar/gkr1293
[31]

Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. 2016. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nature Protocols 11:1650

doi: 10.1038/nprot.2016.095
[32]

Futschik ME, Carlisle B. 2005. Noise-robust soft clustering of gene expression time-course data. Journal of Bioinformatics and Computational Biology 3:965−88

doi: 10.1142/S0219720005001375
[33]

Wickham H. 2016. ggplot2: elegant graphics for data analysis. New York: Springer. https://doi.org/10.1007/978-0-387-98141-3

[34]

Yu G, Wang LG, Han Y, He QY. 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics:a journal of integrative biology 16:284−7

doi: 10.1089/omi.2011.0118
[35]

Randall RS, Sornay E, Dewitte W, Murray JAH. 2015. AINTEGUMENTA and the D-type cyclin CYCD3;1 independently contribute to petal size control in Arabidopsis: evidence for organ size compensation being an emergent rather than a determined property. Journal of Experimental Botany 66:3991−4000

doi: 10.1093/jxb/erv200
[36]

Li YJ, Yu Y, Liu X, Zhang XS, Su YH. 2021. The Arabidopsis MATERNAL EFFECT EMBRYO ARREST45 protein modulates maternal auxin biosynthesis and controls seed size by inducing AINTEGUMENTA. The Plant Cell 33:1907−26

doi: 10.1093/plcell/koab084
[37]

Simmons AR, Davies KA, Wang W, Liu Z, Bergmann DC. 2019. SOL1 and SOL2 regulate fate transition and cell divisions in the Arabidopsis stomatal lineage. Development 146:dev171066

doi: 10.1242/dev.171066
[38]

Noh M, Shin JS, Hong JC, Kim SY, Shin JS. 2021. Arabidopsis TCX8 functions as a senescence modulator by regulating LOX2 expression. Plant Cell Reports 40:677−89

doi: 10.1007/s00299-021-02663-y
[39]

Li C, Potuschak T, Colón-Carmona A, Gutiérrez RA, Doerner P. 2005. Arabidopsis TCP20 links regulation of growth and cell division control pathways. PNAS 102:12978−83

doi: 10.1073/pnas.0504039102
[40]

Bueso E, Muñoz-Bertomeu J, Campos F, Brunaud V, Martínez L, et al. 2014. ARABIDOPSIS THALIANA HOMEOBOX25 uncovers a role for Gibberellins in seed longevity. Plant physiology 164:999−1010

doi: 10.1104/pp.113.232223
[41]

Vigeolas H, Hühn D, Geigenberger P. 2011. Nonsymbiotic hemoglobin-2 leads to an elevated energy state and to a combined increase in polyunsaturated fatty acids and total oil content when overexpressed in developing seeds of transgenic Arabidopsis plants. Plant physiology 155:1435−44

doi: 10.1104/pp.110.166462
[42]

Leister D. 2004. Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance genes. Trends in genetics 20:116−22

doi: 10.1016/j.tig.2004.01.007
[43]

Wei Q, Wang J, Wang W, Hu T, Hu H, et al. 2020. A high-quality chromosome-level genome assembly reveals genetics for important traits in eggplant. Horticulture Research 7:153

doi: 10.1038/s41438-020-00391-0
[44]

Mimura M, Itoh JI. 2014. Genetic interaction between rice PLASTOCHRON genes and the gibberellin pathway in leaf development. Rice 7:25

doi: 10.1186/s12284-014-0025-2
[45]

Sotelo-Silveira M, Cucinotta M, Chauvin AL, Chávez Montes RA, Colombo L, et al. 2013. Cytochrome P450 CYP78A9 is involved in Arabidopsis reproductive development. Plant Physiology 162:779−99

doi: 10.1104/pp.113.218214
[46]

Miyoshi K, Ahn BO, Kawakatsu T, Ito Y, Itoh JI, et al. 2004. PLASTOCHRON1, a timekeeper of leaf initiation in rice, encodes cytochrome P450. PNAS 101:875−80

doi: 10.1073/pnas.2636936100
[47]

Imaishi H, Matsuo S, Swai E, Ohkawa H. 2000. CYP78A1 preferentially expressed in developing inflorescences of Zea mays encoded a cytochrome P450-dependent lauric acid 12-monooxygenase. Bioscience, Biotechnology, and Biochemistry 64:1696−701

doi: 10.1271/bbb.64.1696
[48]

Kai K, Hashidzume H, Yoshimura K, Suzuki H, Sakurai N, et al. 2009. Metabolomics for the characterization of cytochromes P450-dependent fatty acid hydroxylation reactions in Arabidopsis. Plant Biotechnology 26:175−82

doi: 10.5511/plantbiotechnology.26.175
[49]

Shi L, Song J, Guo C, Wang B, Guan Z, et al. 2019. A CACTA-like transposable element in the upstream region of BnaA9.CYP78A9 acts as an enhancer to increase silique length and seed weight in rapeseed. The Plant Journal 98:524−39

doi: 10.1111/tpj.14236
[50]

Zhang Y, Du L, Xu R, Cui R, Hao J, et al. 2015. Transcription factors SOD7/NGAL2 and DPA4/NGAL3 act redundantly to regulate seed size by directly repressing KLU expression in Arabidopsis thaliana. The Plant Cell 27:620−32

doi: 10.1105/tpc.114.135368