[1]

Afrin S, Gasparrini M, Forbes-Hernandez TY, Reboredo-Rodriguez P, Mezzetti B, et al. 2016. Promising Health Benefits of the Strawberry: A Focus on Clinical Studies. Journal of Agricultural and Food Chemistry 64:4435−49

doi: 10.1021/acs.jafc.6b00857
[2]

Palei S, Das AK, Rout GR. 2015. In vitro studies of strawberry-an important fruit crop: a review. The Journal of Plant Science Research 31:115

[3]

Hidaka K, Okamoto A, Araki T, Miyoshi Y, Dan K, et al. 2014. Effect of photoperiod of supplemental lighting with light-emitting diodes on growth and yield of strawberry. Environmental Control in Biology 52:63−71

doi: 10.2525/ecb.52.63
[4]

López-Aranda JM, Soria C, Santos BM, Miranda L, Domínguez P, et al. 2011. Strawberry production in mild climates of the world: a review of current cultivar use. International Journal of Fruit Science 11:232−44

doi: 10.1080/15538362.2011.608294
[5]

Wei H, Liu C, Hu J, Jeong BR. 2020. Quality of Supplementary Morning Lighting (SML) during propagation period affects physiology, stomatal characteristics, and growth of strawberry plants. Plants 9:638

doi: 10.3390/plants9050638
[6]

Zheng L, He H, Song W. 2019. Application of light-emitting diodes and the effect of light quality on horticultural crops: A review. Hortscience 54:1656−61

doi: 10.21273/HORTSCI14109-19
[7]

Nadalini S, Zucchi P, Andreotti C. 2017. Effects of blue and red LED lights on soilless cultivated strawberry growth performances and fruit quality. European Journal of Horticultural Science 82:12−20

doi: 10.17660/eJHS.2017/82.1.2
[8]

Zahedi SM, Sarikhani H. 2017. The effect of end of day far-red light on regulating flowering of short-day strawberry (Fragaria × ananassa Duch. Nv. Paros) in a long-day situation. Russian Journal of Plant Physiology 64:83−90

doi: 10.1134/S1021443717010198
[9]

Miao L, Zhang Y, Yang X, Xiao J, Zhang H, et al. 2016. Colored light-quality selective plastic films affect anthocyanin content, enzyme activities, and the expression of flavonoid genes in strawberry (Fragaria × ananassa) fruit. Food Chemistry 207:93−100

doi: 10.1016/j.foodchem.2016.02.077
[10]

Hogewoning SW, Wientjes E, Douwstra P, Trouwborst G, van Ieperen W, et al. 2012. Photosynthetic quantum yield dynamics: From photosystems to leaves. The Plant Cell 24:1921−35

doi: 10.1105/tpc.112.097972
[11]

Paradiso R, Meinen E, Snel JFH, De Visser P, Van Ieperen W, et al. 2011. Spectral dependence of photosynthesis and light absorptance in single leaves and canopy in rose. Scientia Horticulturae 127:548−54

doi: 10.1016/j.scienta.2010.11.017
[12]

Hogewoning SW, Trouwborst G, Maljaars H, Poorter H, van Ieperen W, et al. 2010. Blue light dose - responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of Experimental Botany 61:3107−17

doi: 10.1093/jxb/erq132
[13]

Trouwborst G, Hogewoning SW, van Kooten O, Harbinson J, van Ieperen W. 2016. Plasticity of photosynthesis after the 'red light syndrome' in cucumber. Environmental and Experimental Botany 121:75−82

doi: 10.1016/j.envexpbot.2015.05.002
[14]

Ouzounis T, Heuvelink E, Ji Y, Schouten HJ, Visser RGF, et al. 2016. Blue and red LED lighting effects on plant biomass, stomatal conductance, and metabolite content in nine tomato genotypes. Acta Horticulturae 1134:251−58

doi: 10.17660/actahortic.2016.1134.34
[15]

Choi HG, Moon BY, Kang NJ. 2015. Effects of LED light on the production of strawberry during cultivation in a plastic greenhouse and in a growth chamber. Scientia Horticulturae 189:22−31

doi: 10.1016/j.scienta.2015.03.022
[16]

Díaz-Galián MV, Torres M, Sanchez-Pagán JD, Navarro PJ, Weiss J, et al. 2021. Enhancement of strawberry production and fruit quality by blue and red LED lights in research and commercial greenhouses. South African Journal of Botany 140:269−75

doi: 10.1016/j.sajb.2020.05.004
[17]

Li H, Dai H, Liu Y, Ma Y, Wu D, et al. 2015. A new strawberry cultivar 'Yanli'. Acta Horticulturae Sinica 42:799

doi: 10.16420/j.issn.0513-353x.2014-0485
[18]

Chang L, Zhang Z, Yang H, Li H, Dai H. 2007. Detection of strawberry RNA and DNA viruses by RT-PCR using total nucleic acid as a template. Journal of Phytopathology 155:431−36

doi: 10.1111/j.1439-0434.2007.01254.x
[19]

Strader L, Weijers D, Wagner D. 2022. Plant transcription factors - being in the right place with the right company. Current Opinion in Plant Biology 65:102136

doi: 10.1016/j.pbi.2021.102136
[20]

Chen C, Tian X, Li J, Bai S, Zhang Z, et al. 2022. Two central circadian oscillators OsPRR59 and OsPRR95 modulate magnesium homeostasis and carbon fixation in rice. Molecular Plant 15:1602−14

doi: 10.1016/j.molp.2022.09.008
[21]

Liu Y, Ma M, Li G, Yuan L, Xie Y, et al. 2020. Transcription factors FHY3 and FAR1 regulate light-induced CIRCADIAN CLOCK ASSOCIATED1 gene expression in Arabidopsis. The Plant Cell 32:1464−78

doi: 10.1105/tpc.19.00981
[22]

Lv X, Zeng X, Hu H, Chen L, Zhang F, et al. 2021. Structural insights into the multivalent binding of the Arabidopsis FLOWERING LOCUS T promoter by the CO-NF-Y master transcription factor complex. The Plant Cell 33:1182−95

doi: 10.1093/plcell/koab016
[23]

Yang J, Yang M, Wang D, Chen F, Shen S. 2010. JcDof1, a Dof transcription factor gene, is associated with the light-mediated circadian clock in Jatropha curcas. Physiologia Plantarum 139:324−34

doi: 10.1111/j.1399-3054.2010.01363.x
[24]

Hao Y, Zhang X, Liu Y, Ma M, Huang X, et al. 2022. Cryo-EM structure of the CRY2 and CIB1 fragment complex provides insights into CIB1-mediated photosignaling. Plant Communications 11:100475

doi: 10.1016/j.xplc.2022.100475
[25]

Bursch K, Toledo-Ortiz G, Pireyre M, Lohr M, Braatz C, et al. 2020. Identification of BBX proteins as rate-limiting cofactors of HY5. Nature Plants 6:921−28

doi: 10.1038/s41477-020-0725-0
[26]

Roig-Villanova I, Bou J, Sorin C, Devlin PF, Martínez-García JF. 2006. Identification of primary target genes of phytochrome signaling. Early transcriptional control during shade avoidance responses in Arabidopsis. Plant Physiology 141:85−96

doi: 10.1104/pp.105.076331
[27]

Gruda N. 2005. Impact of environmental factors on product quality of greenhouse vegetables for fresh consumption. Critical Reviews in Plant Sciences 24:227−47

doi: 10.1080/07352680591008628
[28]

Peet MM. 1997. Greenhouse crop stress management. International symposium on growing media and hydroponics 481:643−54

[29]

Weston LA, Barth MM. 1997. Preharvest factors affecting postharvest quality of vegetables. HortScience 32:812−16

doi: 10.21273/HORTSCI.32.5.812
[30]

Wang T, Wu G, Chen J, Cui P, Chen Z, et al. 2017. Integration of solar technology to modern greenhouse in China: Current status, challenges and prospect. Renewable and Sustainable Energy Reviews 70:1178−88

doi: 10.1016/j.rser.2016.12.020
[31]

Ottosen CO, Rosenqvist E, Sorensen L. 2003. Effect of a dynamic climate control on energy saving, yield and shelf life of spring production of bell peppers (Capsicum annuum L.). European Journal of Horticultural Science 68:26−31

[32]

Hernández R, Kubota C. 2016. Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environmental and Experimental Botany 121:66−74

doi: 10.1016/j.envexpbot.2015.04.001
[33]

Li Y, Liu C, Shi Q, Yang F, Wei M. 2021. Mixed red and blue light promotes ripening and improves quality of tomato fruit by influencing melatonin content. Environmental and Experimental Botany 185:104407

doi: 10.1016/j.envexpbot.2021.104407
[34]

Wang J, Lu W, Tong Y, Yang Q. 2016. Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. Frontiers in Plant Science 7:250

doi: 10.3389/fpls.2016.00250
[35]

Warner R, Wu B, MacPherson S, Lefsrud M. 2021. A review of strawberry photobiology and fruit flavonoids in controlled environments. Frontiers in Plant Science 12:611893

doi: 10.3389/fpls.2021.611893
[36]

Tang Z, Yu J, Xie J, Lyu J, Feng Z, et al. 2019. Physiological and growth response of pepper (Capsicum annum L.) seedlings to supplementary red/blue light revealed through transcriptomic analysis. Agronomy 9:139

doi: 10.3390/agronomy9030139
[37]

Liang Y, Kang C, Kaiser E, Kuang Y, Yang Q, et al. 2021. Red/blue light ratios induce morphology and physiology alterations differently in cucumber and tomato. Scientia Horticulturae 281:109995

doi: 10.1016/j.scienta.2021.109995
[38]

Chen F, Zheng G, Qu M, Wang Y, Lyu MJA, et al. 2021. Knocking out NEGATIVE REGULATOR OF PHOTOSYNTHESIS 1 increases rice leaf photosynthesis and biomass production in the field. Journal of Experimental Botany 72:1836−49

doi: 10.1093/jxb/eraa566
[39]

Dodd AN, Belbin FE, Frank A, Webb AAR. 2015. Interactions between circadian clocks and photosynthesis for the temporal and spatial coordination of metabolism. Frontiers in Plant Science 6:245

doi: 10.3389/fpls.2015.00245
[40]

Yanagisawa S. 2004. Dof domain proteins: Plant-specific transcription factors associated with diverse phenomena unique to plants. Plant and Cell Physiology 45:386−91

doi: 10.1093/pcp/pch055
[41]

Meng Y, Li H, Wang Q, Liu B, Lin C. 2013. Blue light–dependent interaction between cryptochrome2 and CIB1 regulates transcription and leaf senescence in soybean. The Plant Cell 25:4405−20

doi: 10.1105/tpc.113.116590
[42]

Zhao X, Heng Y, Wang X, Deng XW, Xu D. 2020. A positive feedback loop of BBX11-BBX21-HY5 promotes photomorphogenic development in Arabidopsis. Plant Communications 1:100045

doi: 10.1016/j.xplc.2020.100045
[43]

Xu D. 2020. COP1 and BBXs-HY5-mediated light signal transduction in plants. New Phytologist 228:1748−53

doi: 10.1111/nph.16296
[44]

Song Z, Bian Y, Liu J, Sun Y, Xu D. 2020. B-box proteins: pivotal players in light-mediated development in plants. Journal of Integrative Plant Biology 62:1293−309

doi: 10.1111/jipb.12935
[45]

Liu Y, Wei H, Ma M, Li Q, Kong D, et al. 2019. Arabidopsis FHY3 and FAR1 regulate the balance between growth and defense responses under shade conditions. The Plant Cell 31:2089−106

doi: 10.1105/tpc.18.00991
[46]

Lysenko EA. 2007. Plant sigma factors and their role in plastid transcription. Plant Cell Reports 26:845−59

doi: 10.1007/s00299-007-0318-7
[47]

Mellenthin M, Ellersiek U, Börger A, Baier M. 2014. Expression of the Arabidopsis sigma factor SIG5 is photoreceptor and photosynthesis controlled. Plants 3:359−91

doi: 10.3390/plants3030359
[48]

Chi W, He B, Mao J, Jiang J, Zhang L. 2015. Plastid sigma factors: their individual functions and regulation in transcription. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1847:770−78

doi: 10.1016/j.bbabio.2015.01.001
[49]

Kanazawa T, Ishizaki K, Kohchi T, Hanaoka M, Tanaka K. 2013. Characterization of four nuclear-encoded plastid RNA polymerase sigma factor genes in the liverwort Marchantia polymorpha: blue-light-and multiple stress-responsive SIG5 was acquired early in the emergence of terrestrial plants. Plant and Cell Physiology 54:1736−48

doi: 10.1093/pcp/pct119
[50]

Paponov M, Kechasov D, Lacek J, Verheul MJ, Paponov IA. 2020. Supplemental light-emitting diode inter-lighting increases tomato fruit growth through enhanced photosynthetic light use efficiency and modulated root activity. Frontiers in Plant Science 10:1656

doi: 10.3389/fpls.2019.01656
[51]

Wang S, Jin N, Jin L, Xiao X, Hu L, et al. 2022. Response of tomato fruit quality depends on period of LED supplementary light. Frontiers in Nutrition 9:833723

doi: 10.3389/fnut.2022.833723
[52]

Naznin MT, Lefsrud M, Gravel V, Hao X. 2016. Using different ratios of red and blue LEDs to improve the growth of strawberry plants. Acta Horticulturae 1134:125−30

doi: 10.17660/actahortic.2016.1134.17
[53]

Nhut DT, Takamura T, Watanabe H, Okamoto K, Tanaka M. 2003. Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes (LEDs). Plant Cell, Tissue and Organ Culture 73:43−52

doi: 10.1023/A:1022638508007
[54]

Campbell SM, Sims CA, Bartoshuk LM, Colquhoun TA, Schwieterman ML, et al. 2020. Manipulation of sensory characteristics and volatile compounds in strawberry fruit through the use of isolated wavelengths of light. Journal of Food Science 85:771−80

doi: 10.1111/1750-3841.15044
[55]

Wang L, Luo Z, Yang M, Liang Z, Qi M, et al. 2022. The action of RED light: Specific elevation of pelargonidin-based anthocyanin through ABA-related pathway in strawberry. Postharvest Biology and Technology 186:111835

doi: 10.1016/j.postharvbio.2022.111835