[1]

The Tomato Genome Consortium. 2012. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635−41

doi: 10.1038/nature11119
[2]

Klee HJ, Giovannoni JJ. 2011. Genetics and control of tomato fruit ripening and quality attributes. Annual review of genetics 45:41−59

doi: 10.1146/annurev-genet-110410-132507
[3]

Karlova R, Chapman N, David K, Angenent GC, Seymour GB, et al. 2014. Transcriptional control of fleshy fruit development and ripening. Journal of Experimental Botany 65:4527−41

doi: 10.1093/jxb/eru316
[4]

Li S, Chen K, Grierson D. 2021. Molecular and Hormonal Mechanisms Regulating Fleshy Fruit Ripening. Cells 10:1136

doi: 10.3390/cells10051136
[5]

Cherian S, Figueroa CR, Nair H. 2014. 'Movers and shakers' in the regulation of fruit ripening: a cross-dissection of climacteric versus non-climacteric fruit. Journal of Experimental Botany 65:4705−22

doi: 10.1093/jxb/eru280
[6]

Bertin N. 2005. Analysis of the tomato fruit growth response to temperature and plant fruit load in relation to cell division, cell expansion and DNA endoreduplication. Annals of Botany 95:439−47

doi: /10.1093/aob/mci042
[7]

Mintz-Oron S, Mandel T, Rogachev I, Feldberg L, Lotan O, et al. 2008. Gene expression and metabolism in tomato fruit surface tissues. Plant Physiology 147:823−51

doi: 10.1104/pp.108.116004
[8]

Shinozaki Y, Nicolas P, Fernandez-Pozo N, Ma Q, Evanich DJ, et al. 2018. High-resolution spatiotemporal transcriptome mapping of tomato fruit development and ripening. Nature Communications 9:364

doi: 10.1038/s41467-017-02782-9
[9]

Inzé D, De Veylder L. 2006. Cell cycle regulation in plant development. Annual Review of Genetics 40:77−105

doi: 10.1146/annurev.genet.40.110405.090431
[10]

Cheniclet C, Rong WY, Causse M, Frangne N, Bolling L, et al. 2005. Cell expansion and endoreduplication show a large genetic variability in pericarp and contribute strongly to tomato fruit growth. Plant Physiology 139:1984−94

doi: 10.1104/pp.105.068767
[11]

Azzi L, Deluche C, Gévaudant F, Frangne N, Delmas F, et al. 2015. Fruit growth-related genes in tomato. Journal of Experimental Botany 66:1075−86

doi: 10.1093/jxb/eru527
[12]

Bapat VA, Trivedi PK, Ghosh A, Sane VA, Ganapathi TR, et al. 2010. Ripening of fleshy fruit: molecular insight and the role of ethylene. Biotechnology Advances 28(1):94−107

doi: 10.1016/j.biotechadv.2009.10.002
[13]

Xu F, Yuan S, Zhang D, Lv X, Lin H. 2012. The role of alternative oxidase in tomato fruit ripening and its regulatory interaction with ethylene. Journal of Experimental Botany 63:5705−16

doi: 10.1093/jxb/ers226
[14]

Chai Y, Jia H, Li C, Dong Q, Shen Y. 2011. FaPYR1 is involved in strawberry fruit ripening. Journal of Experimental Botany 62:5079−89

doi: 10.1093/jxb/err207
[15]

Jia H, Chai Y, Li C, Lu D, Luo J, et al. 2011. Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiology 157:188−99

doi: 10.1104/pp.111.177311
[16]

Jia H, Lu D, Sun J, Li C, Xing Y, et al. 2013. Type 2C protein phosphatase ABI1 is a negative regulator of strawberry fruit ripening. Journal of Experimental Botany 64:1677−87

doi: 10.1093/jxb/ert028
[17]

Bartley GE, Viitanen PV, Bacot KO, Scolnik PA. 1992. A tomato gene expressed during fruit ripening encodes an enzyme of the carotenoid biosynthesis pathway. The Journal of Biological Chemistry 267(8):5036−39

[18]

Fray RG, Grierson D. 1993. Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Molecular Biology 22:589−602

doi: 10.1007/BF00047400
[19]

Ballester AR, Molthoff J, de Vos R, Hekkert BTL, Orzaez D, et al. 2010. Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. Plant Physiology 152:71−84

doi: 10.1104/pp.109.147322
[20]

Jaakola L. 2013. New insights into the regulation of anthocyanin biosynthesis in fruits. Trends in Plant Science 18:477−83

doi: 10.1016/j.tplants.2013.06.003
[21]

Hyodo H, Terao A, Furukawa J, Sakamoto N, Yurimoto H, et al. 2013. Tissue specific localization of pectin-Ca2+ cross-linkages and pectin methyl-esterification during fruit ripening in tomato (Solanum lycopersicum). PLoS One 8:e78949

doi: 10.1371/journal.pone.0078949
[22]

Brummell DA, Harpster MH. 2001. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Molecular Biology 47:311−39

[23]

Powell ALT, Kalamaki MS, Kurien PA, Gurrieri S, Bennett AB. 2003. Simultaneous transgenic suppression of LePG and LeExp1 influences fruit texture and juice viscosity in a fresh market tomato variety. Journal of Agricultural and Food Chemistry 51:7450−55

doi: 10.1021/jf034165d
[24]

Uluisik S, Chapman NH, Smith R, Poole M, Adams G, et al. 2016. Genetic improvement of tomato by targeted control of fruit softening. Nature Biotechnology 34:950−52

doi: 10.1038/nbt.3602
[25]

Willats WG, Orfila C, Limberg G, Buchholt HC, van Alebeek GJ, et al. 2001. Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls. Implications for pectin methyl esterase action, matrix properties, and cell adhesion. Journal of Biological Chemistry 276:19404−13

doi: 10.1074/jbc.M011242200
[26]

Daher FB, Braybrook SA. 2015. How to let go: pectin and plant cell adhesion. Frontiers in Plant Science 6:523

doi: 10.3389/fpls.2015.00523
[27]

Musseau C, Jorly J, Gadin S, Sørensen I, Deborde C, et al. 2020. The tomato guanylate-binding protein SlGBP1 enables fruit tissue differentiation by maintaining endopolyploid cells in a non-proliferative state. Plant Cell 32:3188−205

doi: 10.1105/tpc.20.00245
[28]

Koch JL, Nevins DJ. 1989. Tomato fruit cell wall: I. Use of purified tomato polygalacturonase and pectinmethylesterase to identify developmental changes in pectins. Plant physiology 91:816−22

doi: 10.1104/pp.91.3.816
[29]

Renaudin JP, Deluche C, Cheniclet C, Chevalier C, Frangne N. 2017. Cell layer-specific patterns of cell division and cell expansion during fruit set and fruit growth in tomato pericarp. Journal of Experimental Botany 68:1613−23

doi: 10.1093/jxb/erx058
[30]

Joubès J, Phan TH, Just D, Rothan C, Bergounioux C, et al. 1999. Molecular and biochemical characterization of the involvement of cyclin-dependent kinase A during the early development of tomato fruit. Plant Physiology 121:857−69

doi: 10.1104/pp.121.3.857
[31]

Mathieu-Rivet E, Gévaudant F, Sicard A, Salar S, Do PT, et al. 2010. Functional analysis of the anaphase promoting complex activator CCS52A highlights the crucial role of endo-reduplication for fruit growth in tomato. The Plant Journal 62:727−41

doi: 10.1111/j.1365-313X.2010.04198.x
[32]

Gonzalez N, Gévaudant F, Hernould M, Chevalier C, Mouras A. 2007. The cell cycle-associated protein kinase WEE1 regulates cell size in relation to endoreduplication in developing tomato fruit. The Plant Journal 51:642−55

doi: 10.1111/j.1365-313X.2007.03167.x
[33]

Arumuganathan K, Earle ED. 1991. Estimation of nuclear DNA content of plants by flow cytometry. Plant Molecular Biology Reporter 9:229−41

doi: 10.1007/BF02672073
[34]

Bao Z, Zhang N, Hua J. 2014. Endopolyploidization and flowering time are antagonistically regulated by checkpoint component MAD1 and immunity modulator MOS1. Nature Communications 5:5628

doi: 10.1038/ncomms6628
[35]

Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, et al. 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049−51

doi: 10.1126/science.220.4601.1049
[36]

Bourdon M, Coriton O, Pirrello J, Cheniclet C, Brown SC, et al. 2011. In planta quantification of endoreduplication using fluorescent in situ hybridization (FISH). The Plant Journal 66:1089−99

doi: 10.1111/j.1365-313X.2011.04568.x
[37]

Bainard JD, Bainard LD, Henry TA, Fazekas AJ, Newmaster SG. 2012. A multivariate analysis of variation in genome size and endoreduplication in angiosperms reveals strong phylogenetic signal and association with phenotypic traits. New phytologist 196(4):1240−50

doi: 10.1111/j.1469-8137.2012.04370.x
[38]

Barow M, Meister A. 2003. Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size. Plant, Cell & Environment 26:571−84

doi: 10.1046/j.1365-3040.2003.00988.x
[39]

Laimbeer FPE, Holt SH, Makris MR, Hardigan MA, Robin Buell C, et al. 2017. Protoplast isolation prior to flow cytometry reveals clear patterns of endoreduplication in potato tubers, related species, and some starchy root crops. Plant Methods 13:27

doi: 10.1186/s13007-017-0177-3
[40]

Pirrello J, Deluche C, Frangne N, Gévaudant F, Maza E, et al. 2018. Transcriptome profiling of sorted endoreduplicated nuclei from tomato fruits: how the global shift in expression ascribed to DNA ploidy influences RNA-Seq data normalization and interpretation. The Plant Journal 93:387−98

doi: 10.1111/tpj.13783
[41]

Bourdon M, Pirrello J, Cheniclet C, Coriton O, Bourge M, et al. 2012. Evidence for karyoplasmic homeostasis during endoreduplication and a ploidy-dependent increase in gene transcription during tomato fruit growth. Development 139:3817−26

doi: 10.1242/dev.084053
[42]

Fieuw S, Willenbrink J. 1991. Isolation of protoplasts from tomato fruit (Lycopersicon esculentum): first uptake studies. Plant Science 76:9−17

doi: 10.1016/0168-9452(91)90212-Q
[43]

Feldhaus MJ, Siegel RW, Opresko LK, Coleman JR, Feldhaus JMW, et al. 2003. Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nature Biotechnology 21:163−70

doi: 10.1038/nbt785
[44]

Chen G, Hayhurst A, Thomas JG, Harvey BR, Iverson BL, et al. 2001. Isolation of high-affinity ligand-binding proteins by periplasmic expression with cytometric screening (PECS). Nature Biotechnology 19:537−42

doi: 10.1038/89281
[45]

Moreno-Romero J, Santos-González J, Hennig L, Köhler C. 2017. Applying the INTACT method to purify endosperm nuclei and to generate parental-specific epigenome profiles. Nature Protocols 12:238−54

doi: 10.1038/nprot.2016.167
[46]

Kim JY, Symeonidi E, Pang TY, Denyer T, Weidauer D, et al. 2021. Distinct identities of leaf phloem cells revealed by single cell transcriptomics. The Plant Cell 33:511−30

doi: 10.1093/plcell/koaa060
[47]

Long Y, Liu Z, Jia J, Mo W, Fang L, et al. 2021. FlsnRNA-seq: protoplasting-free full-length single-nucleus RNA profiling in plants. Genome Biology 22:66

doi: 10.1186/s13059-021-02288-0
[48]

Krishnaswami SR, Grindberg RV, Novotny M, Venepally P, Lacar B, et al. 2016. Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons. Nature Protocols 11:499−524

doi: 10.1038/nprot.2016.015
[49]

Picard CL, Povilus RA, Williams BP, Gehring M. 2021. Transcriptional and imprinting complexity in Arabidopsis seeds at single-nucleus resolution. Nature Plants 7:730−38

doi: 10.1038/s41477-021-00922-0
[50]

Fan W, Xia C, Wang S, Liu J, Deng L, et al. 2022. Rhizobial infection of 4C cells triggers their endoreduplication during symbiotic nodule development in soybean. The New Phytologist 234:1018−30

doi: 10.1111/nph.18036