[1]

Bertness MD. 2008. Atlantic Shorelines: Natural History and Ecology. Princeton University Press: Princeton & Oxford. 431 pp

[2]

Calabon MS, Jones EBG, Promputtha I, Hyde KD. 2021. Fungal biodiversity in salt marsh ecosystems. Journal of Fungi 7:648

doi: 10.3390/jof7080648
[3]

da Luz Calado M, Carvalho L, Barata M, Pang K. 2019. Potential roles of marine fungi in the decomposition process of standing stems and leaves of Spartina maritima. Mycologia 111:371−83

doi: 10.1080/00275514.2019.1571380
[4]

Jones EBG, Pang K, Abdel-Wahab MA, Scholz B, Hyde KD, et al. 2019. An online resource for marine fungi. Fungal Diversity 96:347−433

doi: 10.1007/s13225-019-00426-5
[5]

Dayarathne MC, Wanasinghe DN, Devadatha B, Abeywickrama P, Gareth Jones EB, et al. 2020. Modern taxonomic approaches to identifying diatrypaceous fungi from marine habitats, with a novel genus Halocryptovalsa Dayarathne & K.D. Hyde, gen. nov. Cryptogamie, Mycologie 41:21−67

doi: 10.5252/cryptogamie-mycologie2020v41a3
[6]

Devadatha B, Jones EBG, Pang KL, Abdel-Wahab MA, Hyde KD, et al. 2021. Occurrence and geographical distribution of mangrove fungi. Fungal Diversity 106:137−227

doi: 10.1007/s13225-020-00468-0
[7]

Cooke WB. 1983. Coniothyriaceae. Revista de Biologia (Lisbon) 12:289

[8]

Corda AKJ. 1840. Icones Fungorum hucusque Cognitorum. 4:38

[9]

Cortinas MN, Burgess T, Dell B, Xu D, Crous PW, et al. 2006. First record of Colletogloeopsis zuluense comb. nov., causing a stem canker of Eucalyptus in China. Mycological Research 110:229−36

doi: 10.1016/j.mycres.2005.08.012
[10]

Hongsanan S, Hyde KD, Phookamsak R, Wanasinghe DN, McKenzie EHC, et al. 2020. Refined families of Dothideomycetes: Dothideomycetidae and Pleosporomycetidae. Mycosphere 11:1553−2107

doi: 10.5943/mycosphere/11/1/13
[11]

Kirk P, Cannon P, Minter D, Stalpers JA. 2008. Dictionary of the Fungi. 10th editionn. UK: CAB International

[12]

de Gruyter J, Aveskamp MM, Woudenberg JHC, Verkley GJM, Groenewald JZ, et al. 2009. Molecular phylogeny of Phoma and allied anamorph genera: towards a reclassification of the Phoma complex. Mycological Research 113:508−19

doi: 10.1016/j.mycres.2009.01.002
[13]

Schoch CL, Crous PW, Groenewald JZ, Boehm EWA, Burgess TI, et al. 2009. A class-wide phylogenetic assessment of Dothideomycetes. Studies in Mycology 64:1−15

doi: 10.3114/sim.2009.64.01
[14]

Schoch CL, Sung GH, López-Giráldez F, Townsend JP, Miadlikowska J, et al. 2009. The Ascomycota tree of life: a phylum–wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Systematic Biology 58:224−39

doi: 10.1093/sysbio/syp020
[15]

Aveskamp MM, de Gruyter J, Woudenberg JHC, Verkley GJM, Crous PW. 2010. Highlights of the Didymellaceae: a polyphasic approach to characterise Phoma and related pleosporalean genera. Studies in Mycology 65:1−60

doi: 10.3114/sim.2010.65.01
[16]

Hyde KD, Jones EBG, Liu JK, Ariyawansa H, Boehm E, et al. 2013. Families of Dothideomycetes. Fungal Diversity 63:1−313

doi: 10.1007/s13225-013-0263-4
[17]

de Gruyter J, Woudenberg JHC, Aveskamp MM, Verkley GJM, Groenewald JZ, et al. 2013. Redisposition of phoma-like anamorphs in Pleosporales. Studies in Mycology 75:1−36

doi: 10.3114/sim0004
[18]

Verkley GJM, da Silva M, Wicklow DT, Crous PW. 2004. Paraconiothyrium, a new genus to accommodate the mycoparasite Coniothyrium minitans, anamorphs of Paraphaeosphaeria, and four new species. Studies in Mycology 50:323−35

[19]

Verkley GJM, Dukik K, Renfurm R, Göker M, Stielow JB. 2014. Novel genera and species of coniothyrium-like fungi in Montagnulaceae ( Ascomycota). Persoonia: Molecular Phylogeny and Evolution of Fungi 32:25−51

doi: 10.3767/003158514X679191
[20]

Sutton BC. 1980. The Coelomycetes. Fungi imperfecti with pycnidia, acervuli and stromata. Kew: Commonwealth Mycological Institute

[21]

Wijayawardene NN, Hyde KD, Wanasinghe DN, Papizadeh M, Goonasekara ID, et al. 2016. Taxonomy and phylogeny of dematiaceous coelomycetes. Fungal Diversity 77:1−316

doi: 10.1007/s13225-016-0360-2
[22]

Crous PW, Summerell BA, Shivas RG, Romberg M, Mel'nik VA, et al. 2011. Fungal Planet Description Sheets 92–106. Persoonia: Molecular Phylogeny and Evolution of Fungi 27:130−62

doi: 10.3767/003158511X617561
[23]

Crous PW, Wingfield MJ, Burgess TI, Hardy GS, Crane C, et al. 2016. Fungal Planet Description Sheets: 469–557. Persoonia: Molecular Phylogeny and Evolution of Fungi 37:218−403

doi: 10.3767/003158516X694499
[24]

Crous PW, Wingfield MJ, Burgess TI, Carnegie AJ, Hardy GESJ, et al. 2017. Fungal Planet Description Sheets: 625–715. Persoonia: Molecular Phylogeny and Evolution of Fungi 39:270−467

doi: 10.3767/persoonia.2017.39.11
[25]

Hyde KD, Dong Y, Phookamsak R, Jeewon R, Bhat DJ, et al. 2020. Fungal diversity notes 1151–1276: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 100:5−277

doi: 10.1007/s13225-020-00439-5
[26]

Quaedvlieg W, Verkley GJM, Shin HD, Barreto RW, Alfenas AC, et al. 2013. Sizing up Septoria. Studies in Mycology 75:307−90

doi: 10.3114/sim0017
[27]

Crous PW, Groenewald JZ. 2017. The genera of fungi—G 4: Camarosporium and Dothiora. IMA Fungus 8:131−52

doi: 10.5598/imafungus.2017.08.01.10
[28]

Thambugala KM, Wanasinghe DN, Phillips AJL, Camporesi E, Bulgakov TS, et al. 2017. Mycosphere notes 1–50: Grass ( Poaceae) inhabiting Dothideomycetes. Mycosphere 8:697−796

doi: 10.5943/mycosphere/8/4/13
[29]

Wanasinghe DN, Hyde KD, Jeewon R, Crous PW, Wijayawardene NN, et al. 2017. Phylogenetic revision of Camarosporium ( Pleosporineae, Dothideomycetes) and allied genera. Studies in Mycology 87:207−56

doi: 10.1016/j.simyco.2017.08.001
[30]

Valenzuela-Lopez N, Cano-Lira JF, Guarro J, Sutton DA, Wiederhold N, et al. 2018. Coelomycetous Dothideomycetes with emphasis on the families Cucurbitariaceae and Didymellaceae. Studies in Mycology 90:1−69

doi: 10.1016/j.simyco.2017.11.003
[31]

Yuan HS, Lu X, Dai YC, Hyde KD, Kan YH, et al. 2020. Fungal diversity notes 1277–1386: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 104:1−266

doi: 10.1007/s13225-020-00461-7
[32]

Li WJ, McKenzie EHC, Liu JK, Bhat DJ, Dai DQ, et al. 2020. Taxonomy and phylogeny of hyaline-spored coelomycetes. Fungal Diversity 100:279−801

doi: 10.1007/s13225-020-00440-y
[33]

Wijayawardene NN, Hyde KD, Bhat DJ, Camporesi E, Schumacher RK, et al. 2014. Camarosporium-like species are polyphyletic in Pleosporales; introducing Paracamarosporium and Pseudocamarosporium gen. nov. in Montagnulaceae. Cryptogamie, Mycologie 35:177−98

doi: 10.7872/crym.v35.iss2.2014.177
[34]

Wijayawardene NN, Hyde KD, Dai DQ, Sánchez-García M, Goto BT, et al. 2022. Outline of Fungi and fungus-like taxa - 2021. Mycosphere 13:53−453

doi: 10.5943/mycosphere/13/1/2
[35]

Crous PW, Braun U, Schubert K, Groenewald JZ. 2007. Delimiting Cladosporium from morphologically similar genera. Studies in Mycology 58:33−36

doi: 10.3114/sim.2007.58.02
[36]

Pem D, Hongsanan S, Doilom M, Tibpromma S, Wanasinghe DN, et al. 2019. https: //www. dothideomycetes. org: an online taxonomic resource for the classification, identification, and nomenclature of Dothideomycetes. Asian Journal of Mycology 2:287−97

doi: 10.5943/ajom/2/1/19
[37]

Senanayake IC, Rathnayaka AR, Marasinghe DS, Calabon MS, Gentekaki E, et al. 2020. Morphological approaches in studying fungi: collection, examination, isolation, sporulation and preservation. Mycosphere 11:2678−754

doi: 10.5943/mycosphere/11/1/20
[38]

Atlas RM. 2009. Experiencing displacement: Using art therapy to address xenophobia in South Africa. Development 52:531−36

doi: 10.1057/dev.2009.74
[39]

Jayasiri SC, Hyde KD, Ariyawansa HA, Bhat DJ, Buyck B, et al. 2015. The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Diversity 74:3−18

doi: 10.1007/s13225-015-0351-8
[40]

Index Fungorum. 2022. www.indexfungorum.org/names/names.asp (Accessed on 28th September 2022)

[41]

Dissanayake AJ, Bhunjun CS, Maharachchikumbura SS, Liu JK. 2020. Applied aspects of methods to infer phylogenetic relationships amongst fungi. Mycosphere 11:2652−76

doi: 10.5943/mycosphere/11/1/18
[42]

White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenies. In PCR protocols: a guide to methods and applications, eds. Innis MA, Gelfand DH, Sninsky JJ, White TJ. San Diego: Academic Press. pp. 315–22. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

[43]

Vilgalys R, Hester M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172:4238−46

doi: 10.1128/jb.172.8.4238-4246.1990
[44]

Rehner SA, Samuels GJ. 1994. Taxonomy and phylogeny of Gliocladium analyzed from nuclear large subunit ribosomal DNA sequences. Mycological Research 98:625−34

doi: 10.1016/s0953-7562(09)80409-7
[45]

Hall TA. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 1:95−98

[46]

Katoh K, Rozewicki J, Yamada KD. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20:1160−66

doi: 10.1093/bib/bbx108
[47]

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972−73

doi: 10.1093/bioinformatics/btp348
[48]

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2014. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution 32:268−74

doi: 10.1093/molbev/msu300
[49]

Chernomor O, von Haeseler A, Minh BQ. 2016. Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology 65:997−1008

doi: 10.1093/sysbio/syw037
[50]

Miller MA, Pfeiffer W, Schwartz T. 2012. The CIPRES science gateway: enabling high-impact science for phylogenetics researchers with limited resources. Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment - Chicago, Illinois (2012.07.16–2012.07.20): Bridging from the extreme to the campus and beyond (XSEDE'12), Association for Computing Machinery, USA. pp. 1–8. https://doi.org/10.1145/2335755.2335836

[51]

Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9:772

doi: 10.1038/nmeth.2109
[52]

Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 2010. USA: IEEE. pp. 1–8. https://doi.org/10.1109/GCE.2010.5676129

[53]

Rambaut A. 2012. FigTree. v. 1.4. 0. http://tree.bio.ed.ac.uk/software/figtree/

[54]

Grondona I, Monte E, Garcia-Acha I, Sutton B. 1997. Pyrenochaeta dolichi: an example of a confusing species. Mycological Research 101:1404−8

doi: 10.1017/s0953756297004206
[55]

Stewart RB. 1957. An undescribed species of Pyrenochaeta on soybean. Mycologia 49:115−17

doi: 10.1080/00275514.1957.12024619
[56]

Mohanty NN. 1958. An undescribed species of Pyrenochaeta on Dolichos biflorus Linn. Indian Phytopathology 8:85−87

[57]

Hartman GL, Sinclair JB. 1988. Dactuliochaeta, a new genus for the fungus causing red leaf blotch of soybeans. Mycologia 8:696−706

doi: 10.2307/3807721
[58]

Hartman G, Murithi HM. 2022. Coniothyrium glycines (red leaf blotch). CABI Compendium

doi: 10.1079/cabicompendium.17687
[59]

Chethana KW, Manawasinghe IS, Hurdeal VG, Bhunjun CS, Appadoo MA, et al. 2021. What are fungal species and how to delineate them? Fungal Diversity 109:1−25

doi: 10.1007/s13225-021-00483-9
[60]

Pem D, Jeewon R, Chethana KWT, Hongsanan S, Doilom M, et al. 2021. Species concepts of Dothideomycetes: classification, phylogenetic inconsistencies and taxonomic standardization. Fungal Diversity 109:283−319

doi: 10.1007/s13225-021-00485-7
[61]

Nag Raj TR. 1993. Coelomycetous anamorphs with appendage-bearing Conidia. Vancouver, Canada: Mycologue Publications

[62]

Crous PW, Wingfield MJ, Cheewangkoon R, Carnegie AJ, Burgess TI, et al. 2019. Foliar pathogens of eucalypts. Studies in Mycology 94:125−298

doi: 10.1016/j.simyco.2019.08.001
[63]

Hawksworth DL, Lücking R. 2017. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiology Spectrum 5:5.4.10

doi: 10.1128/microbiolspec.FUNK-0052-2016
[64]

Hyde KD, Jeewon R, Chen YJ, Bhunjun CS, Calabon MS, et al. 2020. The numbers of fungi: is the descriptive curve flattening? Fungal Diversity 103:219−71

doi: 10.1007/s13225-020-00458-2
[65]

Bhunjun CS, Niskanen T, Suwannarach N, Wannathes N, Chen YJ, et al. 2022. The numbers of fungi: are the most speciose genera truly diverse? Fungal Diversity 114:387−462

doi: 10.1007/s13225-022-00501-4
[66]

Lücking R, Aime MC, Robbertse B, Miller AN, Aoki T, et al. 2021. Fungal taxonomy and sequence-based nomenclature. Nature Microbiology 6:540−48

doi: 10.1038/s41564-021-00888-x
[67]

Species Fungorum. 2022. www.speciesfungorum.org/Names/Names.asp (Accessed on 14/12/2022)

[68]

Elsebai MF, Kehraus S, Lindequist U, Sasse F, Shaaban S, et al. 2011. Antimicrobial phenalenone derivatives from the marine-derived fungus Coniothyrium cereale. Organic & Biomolecular Chemistry 9:802−8

doi: 10.1039/c0ob00625d
[69]

Elsebai MF, Nazir M, Kehraus S, Egereva E, Ioset KN, et al. 2012. Polyketide skeletons from the marine alga-derived fungus Coniothyrium cereale. European Journal of Organic Chemistry 2012:6197−203

doi: 10.1002/ejoc.201200700