[1] |
Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H, Sommer H. 1990. Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250:931−36 doi: 10.1126/science.250.4983.931 |
[2] |
Par̆enicová L, de Folter S, Kieffer M, Horner DS, Favalli C, et al. 2003. Molecular and phylogenetic analyses of the complete MADS-Box transcription factor family in Arabidopsis: New openings to the MADS world. The Plant Cell 15:1538−51 doi: 10.1105/tpc.011544 |
[3] |
Arora R, Agarwal P, Ray S, Singh AK, Singh VP, et al. 2007. MADS-box gene family in rice: Genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8(1):1 doi: 10.1186/1471-2164-8-1 |
[4] |
Coen ES, Meyerowitz EM. 1991. The war of the whorls: Genetic interactions controlling flower development. Nature 353:31−37 doi: 10.1038/353031a0 |
[5] |
Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200−3 doi: 10.1038/35012103 |
[6] |
Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF. 2004. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Current biology 14:1935−40 doi: 10.1016/j.cub.2004.10.028 |
[7] |
Theißen G. 2001. Development of Floral Organ Identity: Stories from the MADS House. Current Opinion in Plant Biology 4:75−85 doi: 10.1016/S1369-5266(00)00139-4 |
[8] |
Theißen G, Saedler H. 2001. Floral Quartets. Nature 409:469−71 doi: 10.1038/35054172 |
[9] |
Kramer EM, Dorit RL, Irish VF. 1998. Molecular evolution of genes controlling petal and stamen development: Duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149:765−83 doi: 10.1093/genetics/149.2.765 |
[10] |
Lamb RS, Irish VF. 2003. Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages. Proceedings of the National Academy of Sciences 100:6558−63 doi: 10.1073/pnas.0631708100 |
[11] |
Vandenbussche M, Zethof J, Royaert S, Weterings K, Gerats T. 2004. The duplicated B-class heterodimer model: Whorl-specific effects and complex genetic interactions in Petunia hybrida flower development. The Plant Cell 16:741−54 doi: 10.1105/tpc.019166 |
[12] |
Kramer EM, Holappa L, Gould B, Jaramillo MA, Setnikov D, et al. 2007. Elaboration of B gene function to include the identity of novel floral organs in the lower eudicot Aquilegia. The Plant Cell 19:750−66 doi: 10.1105/tpc.107.050385 |
[13] |
Li Z, Zhang J, Liu G, Li X, Lu C, et al. 2012. Phylogenetic and evolutionary analysis of A-, B-, C- and E-class MADS-box genes in the basal eudicot Platanus acerifolia. Journal of Plant Research 125:381−93 doi: 10.1007/s10265-011-0456-4 |
[14] |
Li Z, Liu G, Zhang J, Lu S, Yi S, et al. 2012. Cloning and characterization of PaleoAP3-like MADS-box gene in London plane tree. Biologia Plantarum 56:585−89 doi: 10.1007/s10535-012-0112-4 |
[15] |
Li Z, Liu G, Zhang, J, Zhang S, Bao M. 2017. Functional analysis of the promoters of B-class MADS-box genes in London plane tree and their application in genetic engineering of sterility. Plant Cell, Tissue and Organ Culture 130:279−88 doi: 10.1007/s11240-017-1222-7 |
[16] |
Kramer EM, Jaramillo MA, Di Stilio VS. 2004. Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in Angiosperms. Genetics 166:1011−23 doi: 10.1093/genetics/166.2.1011 |
[17] |
Zahn LM, Leebens-Mack JH, Arrington JM, Hu Y, Landherr LL. et al. 2006. Conservation and divergence in the AGAMOUS subfamily of MADS-box genes: Evidence of independent sub- and neofunctionalization events. Evolution & Development 8:30−45 doi: 10.1111/j.1525-142X.2006.05073.x |
[18] |
Bowman JL, Drews GN, Meyerowitz EM. 1991. Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development. The Plant Cell 3:749−58 doi: 10.1105/tpc.3.8.749 |
[19] |
Sun W, Huang W, Li Z, Song C, Liu D, et al. 2014. Functional and evolutionary analysis of the AP1/SEP/AGL6 superclade of MADS-box genes in the basal eudicot Epimedium sagittatum. Annals of Botany 113:653−68 doi: 10.1093/aob/mct301 |
[20] |
Singh R, Low ETL, Ooi LCL, Ong-Abdullah M, Ting NC, et al. 2013. The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK. Nature 500(2):340−44 doi: 10.1038/nature12356 |
[21] |
Hands P, Vosnakis N, Betts D, Irish VF, Drea, S. 2011. Alternate transcripts of a floral developmental regulator have both distinct and redundant functions in opium poppy. Annals of Botany 107(9):1557−66 doi: 10.1093/aob/mcr045 |
[22] |
Zhang ML, Uhink CH, Kadereit JW. 2007. Phylogeny and biogeography of Epimedium/Vancouveria (Berberidaceae): Western North American - East Asian Disjunctions, the origin of European Mountain plant taxa, and East Asian species diversity. Systematic Botany 32(1):81−92 doi: 10.1600/036364407780360265 |
[23] |
Sun W, Huang W, Li Z, Lv H, Huang H. et al. 2013. Characterization of a crabs claw gene in basal eudicot species Epimedium sagittatum (Berberidaceae). International Journal of Molecular Sciences 14:1119−31 doi: 10.3390/ijms14011119 |
[24] |
Huang W, Sun W, Lv H, Luo M, Zeng S. et al. 2013. R2R3-MYB transcription factor from Epimedium sagittatum regulates the flavonoid biosynthetic pathway. PLoS One 8(8):e70778 doi: 10.1371/journal.pone.0070778 |
[25] |
Huang W, Zeng S, Xiao G, Wei G, Liao S. et al. 2015. Elucidating the biosynthetic and regulatory mechanisms of flavonoid-derived bioactive components in Epimedium sagittatum. Frontiers in Plant Science 6:689 doi: 10.3389/fpls.2015.00689 |
[26] |
Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28(10):2731−39 doi: 10.1093/molbev/msr121 |
[27] |
Rasmussen DA, Kramer EM, Zimmer EA. 2009. One size fits all? Molecular Evidence for a commonly inherited petal identity program in Ranunculales American Journal of Botany 96:96−109 doi: 10.3732/ajb.0800038 |
[28] |
Sharma B, Yant L, Hodges SA, Kramer EM. 2014. Understanding the development and evolution of novel floral form in Aquilegia. Current Opinion in Plant Biology 17:22−27 doi: 10.1016/j.pbi.2013.10.006 |
[29] |
Sharma B, Guo C, Kong H, Kramer EM. 2011. Petal-specific subfunctionalization of an APETALA3 paralog in the Ranunculales and its implications for petal evolution. New Phytologist 191:870−83 doi: 10.1111/j.1469-8137.2011.03744.x |
[30] |
Zhang R, Guo C, Zhang W, Wang P, Li L, et al. 2013. Disruption of the petal identity gene APETALA3-3 is highly correlated with loss of petals within the buttercup family (Ranunculaceae). Proceedings of the National Academy of Sciences 110:5074−79 doi: 10.1073/pnas.1219690110 |
[31] |
Martinez-Castilla LP, Alvarez-Buylla ER. 2003. Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny. PNAS 100(23):13407−12 doi: 10.1073/pnas.1835864100 |
[32] |
Mizukami Y, Ma H. 1992. Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell 71(1):119−31 doi: 10.1016/0092-8674(92)90271-D |
[33] |
Clough SJ, Bent AF. 1998. Floral dip: A simplified method for Agrobacterium-Mediated transformation of Arabidopsis Thaliana. The Plant Journal 16(6):735−43 doi: 10.1046/j.1365-313x.1998.00343.x |