[1]

Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H, Sommer H. 1990. Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250:931−36

doi: 10.1126/science.250.4983.931
[2]

Par̆enicová L, de Folter S, Kieffer M, Horner DS, Favalli C, et al. 2003. Molecular and phylogenetic analyses of the complete MADS-Box transcription factor family in Arabidopsis: New openings to the MADS world. The Plant Cell 15:1538−51

doi: 10.1105/tpc.011544
[3]

Arora R, Agarwal P, Ray S, Singh AK, Singh VP, et al. 2007. MADS-box gene family in rice: Genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8(1):1

doi: 10.1186/1471-2164-8-1
[4]

Coen ES, Meyerowitz EM. 1991. The war of the whorls: Genetic interactions controlling flower development. Nature 353:31−37

doi: 10.1038/353031a0
[5]

Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200−3

doi: 10.1038/35012103
[6]

Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF. 2004. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Current biology 14:1935−40

doi: 10.1016/j.cub.2004.10.028
[7]

Theißen G. 2001. Development of Floral Organ Identity: Stories from the MADS House. Current Opinion in Plant Biology 4:75−85

doi: 10.1016/S1369-5266(00)00139-4
[8]

Theißen G, Saedler H. 2001. Floral Quartets. Nature 409:469−71

doi: 10.1038/35054172
[9]

Kramer EM, Dorit RL, Irish VF. 1998. Molecular evolution of genes controlling petal and stamen development: Duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149:765−83

doi: 10.1093/genetics/149.2.765
[10]

Lamb RS, Irish VF. 2003. Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages. Proceedings of the National Academy of Sciences 100:6558−63

doi: 10.1073/pnas.0631708100
[11]

Vandenbussche M, Zethof J, Royaert S, Weterings K, Gerats T. 2004. The duplicated B-class heterodimer model: Whorl-specific effects and complex genetic interactions in Petunia hybrida flower development. The Plant Cell 16:741−54

doi: 10.1105/tpc.019166
[12]

Kramer EM, Holappa L, Gould B, Jaramillo MA, Setnikov D, et al. 2007. Elaboration of B gene function to include the identity of novel floral organs in the lower eudicot Aquilegia. The Plant Cell 19:750−66

doi: 10.1105/tpc.107.050385
[13]

Li Z, Zhang J, Liu G, Li X, Lu C, et al. 2012. Phylogenetic and evolutionary analysis of A-, B-, C- and E-class MADS-box genes in the basal eudicot Platanus acerifolia. Journal of Plant Research 125:381−93

doi: 10.1007/s10265-011-0456-4
[14]

Li Z, Liu G, Zhang J, Lu S, Yi S, et al. 2012. Cloning and characterization of PaleoAP3-like MADS-box gene in London plane tree. Biologia Plantarum 56:585−89

doi: 10.1007/s10535-012-0112-4
[15]

Li Z, Liu G, Zhang, J, Zhang S, Bao M. 2017. Functional analysis of the promoters of B-class MADS-box genes in London plane tree and their application in genetic engineering of sterility. Plant Cell, Tissue and Organ Culture 130:279−88

doi: 10.1007/s11240-017-1222-7
[16]

Kramer EM, Jaramillo MA, Di Stilio VS. 2004. Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in Angiosperms. Genetics 166:1011−23

doi: 10.1093/genetics/166.2.1011
[17]

Zahn LM, Leebens-Mack JH, Arrington JM, Hu Y, Landherr LL. et al. 2006. Conservation and divergence in the AGAMOUS subfamily of MADS-box genes: Evidence of independent sub- and neofunctionalization events. Evolution & Development 8:30−45

doi: 10.1111/j.1525-142X.2006.05073.x
[18]

Bowman JL, Drews GN, Meyerowitz EM. 1991. Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development. The Plant Cell 3:749−58

doi: 10.1105/tpc.3.8.749
[19]

Sun W, Huang W, Li Z, Song C, Liu D, et al. 2014. Functional and evolutionary analysis of the AP1/SEP/AGL6 superclade of MADS-box genes in the basal eudicot Epimedium sagittatum. Annals of Botany 113:653−68

doi: 10.1093/aob/mct301
[20]

Singh R, Low ETL, Ooi LCL, Ong-Abdullah M, Ting NC, et al. 2013. The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK. Nature 500(2):340−44

doi: 10.1038/nature12356
[21]

Hands P, Vosnakis N, Betts D, Irish VF, Drea, S. 2011. Alternate transcripts of a floral developmental regulator have both distinct and redundant functions in opium poppy. Annals of Botany 107(9):1557−66

doi: 10.1093/aob/mcr045
[22]

Zhang ML, Uhink CH, Kadereit JW. 2007. Phylogeny and biogeography of Epimedium/Vancouveria (Berberidaceae): Western North American - East Asian Disjunctions, the origin of European Mountain plant taxa, and East Asian species diversity. Systematic Botany 32(1):81−92

doi: 10.1600/036364407780360265
[23]

Sun W, Huang W, Li Z, Lv H, Huang H. et al. 2013. Characterization of a crabs claw gene in basal eudicot species Epimedium sagittatum (Berberidaceae). International Journal of Molecular Sciences 14:1119−31

doi: 10.3390/ijms14011119
[24]

Huang W, Sun W, Lv H, Luo M, Zeng S. et al. 2013. R2R3-MYB transcription factor from Epimedium sagittatum regulates the flavonoid biosynthetic pathway. PLoS One 8(8):e70778

doi: 10.1371/journal.pone.0070778
[25]

Huang W, Zeng S, Xiao G, Wei G, Liao S. et al. 2015. Elucidating the biosynthetic and regulatory mechanisms of flavonoid-derived bioactive components in Epimedium sagittatum. Frontiers in Plant Science 6:689

doi: 10.3389/fpls.2015.00689
[26]

Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28(10):2731−39

doi: 10.1093/molbev/msr121
[27]

Rasmussen DA, Kramer EM, Zimmer EA. 2009. One size fits all? Molecular Evidence for a commonly inherited petal identity program in Ranunculales American Journal of Botany 96:96−109

doi: 10.3732/ajb.0800038
[28]

Sharma B, Yant L, Hodges SA, Kramer EM. 2014. Understanding the development and evolution of novel floral form in Aquilegia. Current Opinion in Plant Biology 17:22−27

doi: 10.1016/j.pbi.2013.10.006
[29]

Sharma B, Guo C, Kong H, Kramer EM. 2011. Petal-specific subfunctionalization of an APETALA3 paralog in the Ranunculales and its implications for petal evolution. New Phytologist 191:870−83

doi: 10.1111/j.1469-8137.2011.03744.x
[30]

Zhang R, Guo C, Zhang W, Wang P, Li L, et al. 2013. Disruption of the petal identity gene APETALA3-3 is highly correlated with loss of petals within the buttercup family (Ranunculaceae). Proceedings of the National Academy of Sciences 110:5074−79

doi: 10.1073/pnas.1219690110
[31]

Martinez-Castilla LP, Alvarez-Buylla ER. 2003. Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny. PNAS 100(23):13407−12

doi: 10.1073/pnas.1835864100
[32]

Mizukami Y, Ma H. 1992. Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell 71(1):119−31

doi: 10.1016/0092-8674(92)90271-D
[33]

Clough SJ, Bent AF. 1998. Floral dip: A simplified method for Agrobacterium-Mediated transformation of Arabidopsis Thaliana. The Plant Journal 16(6):735−43

doi: 10.1046/j.1365-313x.1998.00343.x