[1]

Yang Z, Wu X, Grossnickle SC, Chen L, Yu X, et al. 2020. Formula fertilization promotes Phoebe bournei robust seedling cultivation. Forests 11:781

doi: 10.3390/f11070781
[2]

Li T, Min X. 2020. Dormancy characteristics and germination requirements of Phoebe bournei seed. Scientia Horticulturae 260:108903

doi: 10.1016/j.scienta.2019.108903
[3]

Zhang J, Zhang S, Han S, Wu T, Li X, et al. 2012. Genome-wide identification of microRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis. Planta 236:647−57

doi: 10.1007/s00425-012-1643-9
[4]

Dodeman VL, Ducreux G, Kreis M. 1997. Zygotic embryogenesis versus somatic embryogenesis. Journal of Experimental Botany 48:1493−509

doi: 10.1093/jxb/48.8.1493
[5]

Wang F, Shang G, Wu L, Xu Z, Zhao X, et al. 2020. Chromatin accessibility dynamics and a hierarchical transcriptional regulatory network structure for plant somatic embryogenesis. Developmental Cell 54:742−757.E8

doi: 10.1016/j.devcel.2020.07.003
[6]

Méndez-Hernández HA, Ledezma-Rodríguez M, Avilez-Montalvo RN, Juárez-Gómez YL, Skeete A, et al. 2019. Signaling overview of plant somatic embryogenesis. Frontiers in Plant Science 10:77

doi: 10.3389/fpls.2019.00077
[7]

Chen Y, Xu X, Liu Z, Zhang Z, Xu X, et al. 2020. Global scale transcriptome analysis reveals differentially expressed genes involve in early somatic embryogenesis in Dimocarpus longan Lour. BMC Genomics 21:4

doi: 10.1186/s12864-019-6393-7
[8]

Elhiti M, Mira MM, So KKY, Stasolla C, Hebelstrup KH. 2021. Synthetic strigolactone GR24 improves Arabidopsis somatic embryogenesis through changes in auxin responses. Plants 10:2720

doi: 10.3390/plants10122720
[9]

Qi S, Zhao R, Yan J, Fan Y, Huang C, et al. 2021. Global transcriptome and coexpression network analyses reveal new insights into somatic embryogenesis in Hybrid Sweetgum (Liquidambar styraciflua × Liquidambar formosana). Frontiers in Plant Science 12:751866

doi: 10.3389/fpls.2021.751866
[10]

Li M, Wrobel-Marek J, Heidmann I, Horstman A, Chen B, et al. 2022. Auxin biosynthesis maintains embryo identity and growth during BABY BOOM-induced somatic embryogenesis. Plant Physiology 188:1095−110

doi: 10.1093/plphys/kiab558
[11]

Xu W, Zhang M, Wang C, Lou X, Han X, et al. 2020. Somatic embryo induction and agrobacterium-mediated transformation of embryonic callus tissue in Phoebe bournei, an endangered woody species in Lauraceae. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 48:572−87

doi: 10.15835/nbha48211946
[12]

Han X, Zhang J, Han S, Chong S, Meng G, et al. 2022. The chromosome-scale genome of Phoebe bournei reveals contrasting fates of terpene synthase (TPS)-a and TPS-b subfamilies. Plant Communications100410

doi: 10.1016/j.xplc.2022.100410
[13]

Hou J, Wu Y, Shen Y, Mao Y, Liu W, et al. 2015. Plant regeneration through somatic embryogenesis and shoot organogenesis from immature zygotic embryos of Sapium sebiferum Roxb. Scientia Horticulturae 197:218−25

doi: 10.1016/j.scienta.2015.09.040
[14]

Kong D, Hao Y, Cui H. 2016. The WUSCHEL related homeobox protein WOX7 regulates the sugar response of lateral root development in Arabidopsis thaliana. Molecular Plant 9:261−70

doi: 10.1016/j.molp.2015.11.006
[15]

Xiao Y, Chen Y, Ding Y, Wu J, Wang P, et al. 2018. Effects of GhWUS from upland cotton (Gossypium hirsutum L.) on somatic embryogenesis and shoot regeneration. Plant Science 270:157−65

doi: 10.1016/j.plantsci.2018.02.018
[16]

Nowak K, Morończyk J, Grzyb M, Szczygieł-Sommer A, Gaj MD. 2022. miR172 regulates WUS during somatic embryogenesis in Arabidopsis via AP2. Cells 11:718

doi: 10.3390/cells11040718
[17]

Hassani SB, Trontin JF, Raschke J, Zoglauer K, Rupps A. 2022. Constitutive overexpression of a conifer WOX2 homolog affects somatic embryo development in Pinus pinaster and promotes somatic embryogenesis and organogenesis in Arabidopsis seedlings. Frontiers in Plant Science 13:838421

doi: 10.3389/fpls.2022.838421
[18]

Mayer KF, Schoof H, Haecker A, Lenhard M, Jürgens G, et al. 1998. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805−15

doi: 10.1016/s0092-8674(00)81703-1
[19]

Haecker A, Gross-Hardt R, Geiges B, Sarkar A, Breuninger H, et al. 2004. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131:657−68

doi: 10.1242/dev.00963
[20]

Breuninger H, Rikirsch E, Hermann M, Ueda M, Laux T. 2008. Differential expression of WOX genes mediates apical-basal axis formation in the Arabidopsis embryo. Developmental Cell 14:867−76

doi: 10.1016/j.devcel.2008.03.008
[21]

Palovaara J, Hallberg H, Stasolla C, Hakman I. 2010. Comparative expression pattern analysis of WUSCHEL-related homeobox 2 (WOX2) and WOX8/9 in developing seeds and somatic embryos of the gymnosperm Picea abies. New Phytologist 188:122−35

doi: 10.1111/j.1469-8137.2010.03336.x
[22]

Gambino G, Minuto M, Boccacci P, Perrone I, Vallania R, et al. 2011. Characterization of expression dynamics of WOX homeodomain transcription factors during somatic embryogenesis in Vitis vinifera. Journal of Experimental Botany 62:1089−101

doi: 10.1093/jxb/erq349
[23]

Tvorogova VE, Fedorova YA, Potsenkovskaya EA, Kudriashov AA, Efremova EP, et al. 2019. The WUSCHEL-related homeobox transcription factor MtWOX9-1 stimulates somatic embryogenesis in Medicago truncatula. Plant Cell, Tissue and Organ Culture (PCTOC) 138:517−27

doi: 10.1007/s11240-019-01648-w
[24]

Zhang A, Li Y, Yarra R, Li R, Cao H, et al. 2022. Genome-wide identification of WUSCHEL-related Homeobox gene family and their expression analysis during somatic embryogenesis in Oil Palm (Elaeis guineensis). Tropical Plant Biology 15:55−64

doi: 10.1007/s12042-021-09299-y
[25]

Horstman A, Bemer M, Boutilier K. 2017. A transcriptional view on somatic embryogenesis. Regeneration 4:201−16

doi: 10.1002/reg2.91
[26]

Garcia C, Furtado de Almeida AA, Costa M, Britto D, Valle R, et al. 2019. Abnormalities in somatic embryogenesis caused by 2, 4-D: an overview. Plant Cell, Tissue and Organ Culture (PCTOC) 137:193−212

doi: 10.1007/s11240-019-01569-8
[27]

Su YH, Zhao XY, Liu YB, Zhang CL, O'Neill SD, Zhang XS. 2009. Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. The Plant Journal 59:448−60

doi: 10.1111/j.1365-313X.2009.03880.x
[28]

Wójcikowska B, Jaskóła K, Gąsiorek P, Meus M, Nowak K, et al. 2013. LEAFY COTYLEDON2 (LEC2) promotes embryogenic induction in somatic tissues of Arabidopsis, via YUCCA-mediated auxin biosynthesis. Planta 238:425−40

doi: 10.1007/s00425-013-1892-2
[29]

Wójcik AM, Wójcikowska B, Gaj MD. 2020. Current perspectives on the auxin-mediated genetic network that controls the induction of somatic embryogenesis in plants. International Journal of Molecular Sciences21

doi: 10.3390/ijms21041333
[30]

Mazri MA, Meziani R, Belkoura I, Mokhless B, Nour S. 2018. A combined pathway of organogenesis and somatic embryogenesis for an efficient large-scale propagation in date palm (Phoenix dactylifera L.) cv. Mejhoul. 3 Biotech 8:215

doi: 10.1007/s13205-018-1235-x
[31]

Cipriano JLD, Cruz ACF, Mancini KC, Schmildt ER, Lopes JC, et al. 2018. Somatic embryogenesis in Carica papaya as affected by auxins and explants, and morphoanatomical-related aspects. Anais Da Academia Brasileira De Ciencias 90:385−400

doi: 10.1590/0001-3765201820160252
[32]

Lelu-Walter MA, Gautier F, Eliášová K, Sanchez L, Teyssier C, et al. 2018. High gellan gum concentration and secondary somatic embryogenesis: two key factors to improve somatic embryo development in Pseudotsuga menziesii [Mirb.]. Plant Cell, Tissue and Organ Culture (PCTOC) 132:137−55

doi: 10.1007/s11240-017-1318-0
[33]

Ruduś I, Kępczyńska E, Kępczyński J. 2006. Comparative efficacy of abscisic acid and methyl jasmonate for indirect somatic embryogenesis in Medicago sativa L. Plant Growth Regulation 48:1−11

doi: 10.1007/s10725-005-5136-8
[34]

Cheng T, Meng Y, Chen J, Shi J. 2017. Effects of methyl jasmonic acid on somatic embryogenesis of Liriodendron hybrid. Journal of Nanjing Forestry University (Natural Sciences Edition) 41:41−46

[35]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202

doi: 10.1016/j.molp.2020.06.009
[36]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ Method. Methods 25:402−8

doi: 10.1006/meth.2001.1262
[37]

Zhang X, Zong J, Liu J, Yin J, Zhang D. 2010. Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar. Journal of Integrative Plant Biology 52:1016−26

doi: 10.1111/j.1744-7909.2010.00982.x
[38]

Wang P, Guo Y, Chen X, Zheng Y, Sun Y, et al. 2019. Genome-wide identification of WOX genes and their expression patterns under different hormone and abiotic stress treatments in tea plant (Camellia sinensis). Trees 33:1129−42

doi: 10.1007/s00468-019-01847-0
[39]

Liu B, Wang L, Zhang J, Li J, Zheng H, et al. 2014. WUSCHEL-related Homeobox genes in Populus tomentosa: diversified expression patterns and a functional similarity in adventitious root formation. BMC Genomics 15:296

doi: 10.1186/1471-2164-15-296
[40]

Hirakawa Y, Kondo Y, Fukuda H. 2010. TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. The Plant Cell 22:2618−29

doi: 10.1105/tpc.110.076083
[41]

Etchells JP, Smit ME, Gaudinier A, Williams CJ, Brady SM. 2016. A brief history of the TDIF-PXY signalling module: balancing meristem identity and differentiation during vascular development. New Phytologist 209:474−84

doi: 10.1111/nph.13642
[42]

Kucukoglu M, Nilsson J, Zheng B, Chaabouni S, Nilsson O. 2017. WUSCHEL-RELATED HOMEOBOX4 (WOX4)-like genes regulate cambial cell division activity and secondary growth in Populus trees. New Phytologist 215:642−57

doi: 10.1111/nph.14631
[43]

Liu J, Sheng L, Xu Y, Li J, Yang Z, et al. 2014. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. The Plant Cell 26:1081−93

doi: 10.1105/tpc.114.122887
[44]

Sheng L, Hu X, Du Y, Zhang G, Huang H, et al. 2017. Non-canonical WOX11-mediated root branching contributes to plasticity in Arabidopsis root system architecture. Development 144:3126−33

doi: 10.1242/dev.152132
[45]

Liu J, Hu X, Qin P, Prasad K, Hu Y, et al. 2018. The WOX11-LBD16 Pathway promotes pluripotency acquisition in callus cells during de novo shoot regeneration in tissue culture. Plant and Cell Physiology 59:739−43

doi: 10.1093/pcp/pcy010
[46]

Zuo J, Niu QW, Frugis G, Chua NH. 2002. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. The Plant Journal 30:349−59

doi: 10.1046/j.1365-313X.2002.01289.x
[47]

Arroyo-Herrera A, Ku Gonzalez A, Canche Moo R, Quiroz-Figueroa FR, Loyola-Vargas VM, et al. 2008. Expression of WUSCHEL in Coffea canephora causes ectopic morphogenesis and increases somatic embryogenesis. Plant Cell, Tissue and Organ Culture 94:171−80

doi: 10.1007/s11240-008-9401-1
[48]

Kadri A, Grenier De March G, Guerineau F, Cosson V, Ratet P. 2021. WUSCHEL overexpression promotes callogenesis and somatic embryogenesis in Medicago truncatula Gaertn. Plants 10:715

doi: 10.3390/plants10040715
[49]

Palovaara J, Hakman I. 2008. Conifer WOX-related homeodomain transcription factors, developmental consideration and expression dynamic of WOX2 during Picea abies somatic embryogenesis. Plant Molecular Biology 66:533−49

doi: 10.1007/s11103-008-9289-5
[50]

Hu X, Xu L. 2016. Transcription factors WOX11/12 directly activate WOX5/7 to promote root primordia initiation and organogenesis. Plant Physiology 172:2363−73

doi: 10.1104/pp.16.01067
[51]

Ikeuchi M, Iwase A, Ito T, Tanaka H, Favero DS, et al. 2022. Wound-inducible WUSCHEL-RELATED HOMEOBOX 13 is required for callus growth and organ reconnection. Plant Physiology 188:425−41

doi: 10.1093/plphys/kiab510
[52]

Gulzar B, Mujib A, Malik MQ, Sayeed R, Mamgain J, Ejaz B. 2020. Genes, proteins and other networks regulating somatic embryogenesis in plants. Journal, Genetic Engineering & Biotechnology 18:31

doi: 10.1186/s43141-020-00047-5
[53]

Raghavan V. 2004. Role of 2,4-dichlorophenoxyacetic acid (2,4-D) in somatic embryogenesis on cultured zygotic embryos of Arabidopsis: Cell expansion, cell cycling, and morphogenesis of embryos exposed to 2,4-D continuously. American Journal of Botany 91:1743−56

doi: 10.3732/ajb.91.11.1743
[54]

von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L. 2002. Developmental pathways of somatic embryogenesis. Plant Cell, Tissue and Organ Culture 69:233−49

doi: 10.1023/A:1015673200621
[55]

Rai MK, Shekhawat NS, Harish, Gupta AK, Phulwaria M, et al. 2011. The role of abscisic acid in plant tissue culture: a review of recent progress. Plant Cell, Tissue and Organ Culture (PCTOC) 106:179−90

doi: 10.1007/s11240-011-9923-9
[56]

Michalczuk L, Ribnicky DM, Cooke TJ, Cohen JD. 1992. Regulation of indole-3-acetic acid biosynthetic pathways in carrot cell cultures. Plant Physiology 100:1346−53

doi: 10.1104/pp.100.3.1346
[57]

Godel-Jedrychowska K, Kulinska-Lukaszek K, Horstman A, Soriano M, Li M, et al. 2020. Symplasmic isolation marks cell fate changes during somatic embryogenesis. Journal of Experimental Botany 71:2612−28

doi: 10.1093/jxb/eraa041
[58]

Palovaara J, Hakman I. 2009. WOX2 and polar auxin transport during spruce embryo pattern formation. Plant Signal & Behavior 4:153−55

doi: 10.4161/psb.4.2.7684
[59]

Maruyama TE, Ueno S, Mori H, Kaneeda T, Moriguchi Y. 2021. Factors influencing somatic embryo maturation in Sugi (Japanese Cedar, Cryptomeria japonica (Thunb. ex L. f.) D. Don). Plants 10:874

doi: 10.3390/plants10050874
[60]

Li H, Li X, Sun M, Chen S, Ma H, et al. 2021. Molecular characterization and gene expression analysis of tomato WOX transcription factor family under abiotic stress and phytohormone treatment. Journal of Plant Biochemistry and Biotechnology 30:973−86

doi: 10.1007/s13562-021-00723-8
[61]

Tian Q, Lin Y, Yang M, Zhang D, Lai R, et al. 2015. DlRan3A is involved in hormone, light, and abiotic stress responses in embryogenic callus of Dimocarpus longan Lour. Gene 569:267−75

doi: 10.1016/j.gene.2015.06.013
[62]

Abdelsalam A, Mahran E, Chowdhury K, Boroujerdi A, El-Bakry A. 2021. Effect of exogenous methyl jasmonate on in vitro propagation, metabolic profiling and proximadiol production from Cymbopogon schoenanthus subsp. proximus. Plant Physiology Reports 26:548−60

doi: 10.1007/s40502-021-00608-x