[1] |
Fox AR, Maistriaux LC, Chaumont F. 2017. Toward understanding of the high number of plant aquaporin isoforms and multiple regulation mechanisms. Plant Science 264:179−87 doi: 10.1016/j.plantsci.2017.07.021 |
[2] |
Chaumont F, Tyerman SD. 2014. Aquaporins: highly regulated channels controlling plant water relations. Plant Physiology 164:1600−18 doi: 10.1104/pp.113.233791 |
[3] |
Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjövall S, et al. 2001. The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiology 126:1358−69 doi: 10.1104/pp.126.4.1358 |
[4] |
Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M. 2005. Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant and Cell Physiology 46:1568−77 doi: 10.1093/pcp/pci172 |
[5] |
Zhang D, Ali Z, Wang C, Xu L, Yi J, et al. 2013. Genome-wide sequence characterization and expression analysis of major intrinsic proteins in soybean (Glycine max L.). PLoS One 8:e56312 doi: 10.1371/journal.pone.0056312 |
[6] |
Deshmukh RK, Vivancos J, Guérin V, Sonah H, Labbé C, et al. 2013. Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Molecular Biology 83:303−15 doi: 10.1007/s11103-013-0087-3 |
[7] |
Deokar AA, Tar'An B. 2016. Genome-wide analysis of the aquaporin gene family in chickpea (Cicer arietinum L.). Frontiers in Plant Science 7:1802 doi: 10.3389/fpls.2016.01802 |
[8] |
Shivaraj SM, Deshmukh R, Sonah H, Bélanger RR. 2019. Identification and characterization of aquaporin genes in Arachis duranensis and Arachis ipaensis genomes, the diploid progenitors of peanut. BMC Genomics 20:222 doi: 10.1186/s12864-019-5606-4 |
[9] |
De Rosa A, Watson-Lazowski A, Evans JR, Groszmann M. 2020. Genome-wide identification and characterisation of Aquaporins in Nicotiana tabacum and their relationships with other Solanaceae species. BMC Plant Biology 20:266 doi: 10.1186/s12870-020-02412-5 |
[10] |
Kruse E, Uehlein N, Kaldenhoff R. 2006. The aquaporins. Genome Biology 7:206 doi: 10.1186/gb-2006-7-2-206 |
[11] |
Ishikawa F, Suga S, Uemura T, Sato MH, Maeshima M. 2005. Novel type aquaporin SIPs are mainly localized to the ER membrane and show cell-specific expression in Arabidopsis thaliana. FEBS Letters 579:5814−20 doi: 10.1016/j.febslet.2005.09.076 |
[12] |
Fortin MG, Morrison NA, Verma DP. 1987. Nodulin-26, a peribacteroid membrane nodulin is expressed independently of the development of the peribacteroid compartment. Nucleic Acids Research 15:813−24 doi: 10.1093/nar/15.2.813 |
[13] |
Kapilan R, Vaziri M, Zwiazek JJ. 2018. Regulation of aquaporins in plants under stress. Biological Research 51:4 doi: 10.1186/s40659-018-0152-0 |
[14] |
Clarkson DT, Carvajal M, Henzler T, Waterhouse RN, Smyth AJ, et al. 2000. Root hydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress. Journal of Experimental Botany 51:61−70 doi: 10.1093/jexbot/51.342.61 |
[15] |
Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, et al. 2015. Aquaporins in plants. Physiological Reviews 95:1321−58 doi: 10.1152/physrev.00008.2015 |
[16] |
Cui X, Hao F, Chen H, Chen J, Wang X. 2008. Expression of the Vicia faba VfPIP1 gene in Arabidopsis thaliana plants improves their drought resistance. Journal of Plant Research 121:207−14 doi: 10.1007/s10265-007-0130-z |
[17] |
Ranganathan K, El Kayal W, Cooke JEK, Zwiazek JJ. 2016. Responses of hybrid aspen over-expressing a PIP2;5 aquaporin to low root temperature. Journal of Plant Physiology 192:98−104 doi: 10.1016/j.jplph.2016.02.001 |
[18] |
Sakurai-Ishikawa JU, Murai-Hatano MA, Hayashi H, Ahamed A, Fukushi K, et al. 2011. Transpiration from shoots triggers diurnal changes in root aquaporin expression. Plant, Cell & Environment 34:1150−63 doi: 10.1111/j.1365-3040.2011.02313.x |
[19] |
Nada RM, Abogadallah GM. 2014. Aquaporins are major determinants of water use efficiency of rice plants in the field. Plant Science 227:165−80 doi: 10.1016/j.plantsci.2014.08.006 |
[20] |
Wang L, Zhang C, Wang Y, Wang Y, Yang C, et al. 2018. Tamarix hispida aquaporin ThPIP2;5 confers salt and osmotic stress tolerance to transgenic Tamarix and Arabidopsis. Environmental and Experimental Botany 152:158−66 doi: 10.1016/j.envexpbot.2017.05.018 |
[21] |
Wang L, Li Q, Lei Q, Feng C, Zheng X, et al. 2017. Ectopically expressing MdPIP1; 3, an aquaporin gene, increased fruit size and enhanced drought tolerance of transgenic tomatoes. BMC Plant Biology 17:246 doi: 10.1186/s12870-017-1212-2 |
[22] |
Wang X, Li Y, Ji W, Bai X, Cai H, et al. 2011. A novel Glycine soja tonoplast intrinsic protein gene responds to abiotic stress and depresses salt and dehydration tolerance in transgenic Arabidopsis thaliana. Journal of Plant Physiology 168:1241−48 doi: 10.1016/j.jplph.2011.01.016 |
[23] |
Maiti D, Tong X, Mou X, Yang K. 2019. Carbon-based nanomaterials for biomedical applications: a recent study. Frontiers in Pharmacology 9:1401 doi: 10.3389/fphar.2018.01401 |
[24] |
Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, et al. 2009. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221−27 doi: 10.1021/nn900887m |
[25] |
Burman U, Kumar P. 2018. Plant response to engineered nanoparticles. In Nanomaterials in Plants, Algae, and Microorganisms, eds. Tripathi DK, Ahmad P, Sharma S, Chauhan DK, Dubey NK. London, United Kingdom: Academic Press. pp. 103−18. https://doi.org/10.1016/B978-0-12-811487-2.00005-0 |
[26] |
Ali S, Mehmood A, Khan N. 2021. Uptake, translocation, and consequences of nanomaterials on plant growth and stress adaptation. Journal of Nanomaterials 2021:6677616 doi: 10.1155/2021/6677616 |
[27] |
Qin Y. 2016. Medical textile materials with drug-releasing properties. In Medical Textile Materials. pp. 175−89. https://doi.org/10.1016/B978-0-08-100618-4.00013-3 |
[28] |
Xiao L, Takada H, Gan X, Miwa N. 2006. The water-soluble fullerene derivative 'Radical Sponge®'exerts cytoprotective action against UVA irradiation but not visible-light-catalyzed cytotoxicity in human skin keratinocytes. Bioorganic & Medicinal Chemistry Letters 16:1590−95 doi: 10.1016/j.bmcl.2005.12.011 |
[29] |
Krokosz A. 2007. Fullerenes in biology. Postepy Biochemii 53:91−96 |
[30] |
Kole C, Kole P, Randunu KM, Choudhary P, Podila R, et al. 2013. Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnology 13:37 doi: 10.1186/1472-6750-13-37 |
[31] |
Husen A, Siddiqi KS. 2014. Carbon and fullerene nanomaterials in plant system. Journal of Nanobiotechnology 12:16 doi: 10.1186/1477-3155-12-16 |
[32] |
Panova GG, Ktitorova IN, Skobeleva OV, Sinjavina NG, Charykov NA, et al. 2016. Impact of polyhydroxy fullerene (fullerol or fullerenol) on growth and biophysical characteristics of barley seedlings in favourable and stressful conditions. Plant Growth Regulation 79:309−17 doi: 10.1007/s10725-015-0135-x |
[33] |
Arruda SCC, Silva ALD, Galazzi RM, Azevedo RA, Arruda MAZ. 2015. Nanoparticles applied to plant science: a review. Talanta 131:693−705 doi: 10.1016/j.talanta.2014.08.050 |
[34] |
Samadi S, Asgari Lajayer B, Moghiseh E, Rodríguez-Couto S. 2021. Effect of carbon nanomaterials on cell toxicity, biomass production, nutritional and active compound accumulation in plants. Environmental Technology & Innovation 21:101323 doi: 10.1016/j.eti.2020.101323 |
[35] |
Kreplak J, Madoui MA, Cápal P, Novák P, Labadie K, et al. 2019. A reference genome for pea provides insight into legume genome evolution. Nature Genetics 51:1411−22 doi: 10.1038/s41588-019-0480-1 |
[36] |
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30:2725−29 doi: 10.1093/molbev/mst197 |
[37] |
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, Lanczycki CJ. 2015. CDD: NCBI's conserved domain database. Nucleic Acids Research 43:D222−D226 doi: 10.1093/nar/gku1221 |
[38] |
Krogh A, Larsson B, Von Heijne G, Sonnhammer EL. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of Molecular Biology 305:567−80 doi: 10.1006/jmbi.2000.4315 |
[39] |
Stothard P. 2000. The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. BioTechniques 28:1102−4 doi: 10.2144/00286ir01 |
[40] |
Chou KC, Shen HB. 2010. Plant-mPLoc: A top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One 5:e11335 doi: 10.1371/journal.pone.0011335 |
[41] |
Horton P, Park KJ, Obayashi T, Fujita N, Harada H, et al. 2007. WoLF PSORT: protein localization predictor. Nucleic Acids Research 35:W585−W587 doi: 10.1093/nar/gkm259 |
[42] |
Hu B, Jin J, Guo A, Zhang H, Luo J, et al. 2015. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296−97 doi: 10.1093/bioinformatics/btu817 |
[43] |
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, et al. 2013. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology 14:R36 doi: 10.1186/gb-2013-14-4-r36 |
[44] |
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, et al. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols 7:562−78 doi: 10.1038/nprot.2012.016 |
[45] |
Savage DF, O'Connell JD III, Miercke LJW, Finer-Moore J, Stroud RM. 2010. Structural context shapes the aquaporin selectivity filter. Proceedings of the National Academy of Sciences 107:17164−69 doi: 10.1073/pnas.1009864107 |
[46] |
Sui H, Han BG, Lee JK, Walian P, Jap BK. 2001. Structural basis of water-specific transport through the AQP1 water channel. Nature 414:872−78 doi: 10.1038/414872a |
[47] |
Deshmukh RK, Vivancos J, Ramakrishnan G, Guérin V, Carpentier G, et al. 2015. A precise spacing between the NPA domains of aquaporins is essential for silicon permeability in plants. The Plant Journal 83:489−500 doi: 10.1111/tpj.12904 |
[48] |
Ariani A, Gepts P. 2015. Genome-wide identification and characterization of aquaporin gene family in common bean (Phaseolus vulgaris L.). Molecular Genetics and Genomics 290:1771−85 doi: 10.1007/s00438-015-1038-2 |
[49] |
Min X, Wu H, Zhang Z, Wei X, Jin X, et al. 2019. Genome-wide identification and characterization of the aquaporin gene family in Medicago truncatula. Journal of Plant Biochemistry and Biotechnology 28:320−35 doi: 10.1007/s13562-018-0484-4 |
[50] |
Reuscher S, Akiyama M, Mori C, Aoki K, Shibata D, et al. 2013. Genome-wide identification and expression analysis of aquaporins in tomato. PLoS One 8:e79052 doi: 10.1371/journal.pone.0079052 |
[51] |
Lee JK, Kozono D, Remis J, Kitagawa Y, Agre P, et al. 2005. Structural basis for conductance by the archaeal aquaporin AqpM at 1.68 Å. PNAS 102:18932−37 doi: 10.1073/pnas.0509469102 |
[52] |
Porcel R, Bustamante A, Ros R, Serrano R, Mulet Salort JM. 2018. BvCOLD1: a novel aquaporin from sugar beet (Beta vulgaris L.) involved in boron homeostasis and abiotic stress. Plant, Cell & Environment 41:2844−57 doi: /10.1111/pce.13416 |
[53] |
Coskun D, Deshmukh R, Sonah H, Menzies JG, Reynolds O, et al. 2019. The controversies of silicon's role in plant biology. New Phytologist 221:67−85 doi: 10.1111/nph.15343 |
[54] |
Zhang N, Deyholos MK. 2016. RNASeq analysis of the shoot apex of flax (Linum usitatissimum) to identify phloem fiber specification genes. Frontiers in Plant Science 7:950 doi: 10.3389/fpls.2016.00950 |
[55] |
Sonah H, Deshmukh RK, Labbé C, Bélanger RR. 2017. Analysis of aquaporins in Brassicaceae species reveals high-level of conservation and dynamic role against biotic and abiotic stress in canola. Scientific Reports 7:2771 doi: 10.1038/s41598-017-02877-9 |
[56] |
Xiong J, Li J, Wang H, Zhang C, Naeem MS. 2018. Fullerol improves seed germination, biomass accumulation, photosynthesis and antioxidant system in Brassica napus L. under water stress. Plant Physiology and Biochemistry 129:130−40 doi: 10.1016/j.plaphy.2018.05.026 |
[57] |
Toscano S, Romano D, Tribulato A, Patanè C. 2017. Effects of drought stress on seed germination of ornamental sunflowers. Acta Physiologiae Plantarum 39:184 doi: 10.1007/s11738-017-2484-8 |
[58] |
Suga S, Komatsu S, Maeshima M. 2002. Aquaporin isoforms responsive to salt and water stresses and phytohormones in radish seedlings. Plant and Cell Physiology 43:1229−37 doi: 10.1093/pcp/pcf148 |
[59] |
Rodrigues MI, Bravo JP, Sassaki FT, Severino FE, Maia IG. 2013. The tonoplast intrinsic aquaporin (TIP) subfamily of Eucalyptus grandis: characterization of EgTIP2, a root-specific and osmotic stress-responsive gene. Plant Science 213:106−13 doi: 10.1016/j.plantsci.2013.09.005 |
[60] |
Béré E, Lahbib K, Merceron B, Fleurat-Lessard P, Boughanmi NG. 2017. α-TIP aquaporin distribution and size tonoplast variation in storage cells of Vicia faba cotyledons at seed maturation and germination stages. Journal of Plant Physiology 216:145−51 doi: 10.1016/j.jplph.2017.04.019 |