[1]

Liu B, Guan D, Zhai X, Yang S, Xue S, et al. 2019. Selection footprints reflect genomic changes associated with breeding efforts in 56 cucumber inbred lines. Horticulture Research 6:127

doi: 10.1038/s41438-019-0209-4
[2]

Liu X, Zhai X, Zhang Y, Yin S, Feng Z, et al. 2020. A review on genetic and molecular biology of fruit morphogenesis in cucumber. Acta Horticulturae Sinica 47:1793−809

doi: 10.16420/j.issn.0513-353x.2020-0673
[3]

Zhai X, Wu H, Wang Y, Zhang Z, Shan L, et al. 2022. The fruit glossiness locus, dull fruit(D) encodes a C2H2 type zinc finger transcription factor CsDULL in cucumber (Cucumis sativus L.). Horticulture Research 9:uhac146

doi: 10.1093/hr/uhac146
[4]

Lun Y, Wang X, Zhang C, Yang L, Gao D, et al. 2016. A CsYcf54 variant conferring light green coloration in cucumber. Euphytica 208:509−17

doi: 10.1007/s10681-015-1592-z
[5]

Zhou Q, Wang S, Hu B, Chen H, Zhang Z, et al. 2015. An accumulation and replication of chloroplasts 5 gene mutation confers light green peel in cucumber. Journal of Integrative Plant Biology 57:936−42

doi: 10.1111/jipb.12355
[6]

Liu H, Jiao J, Liang X, Liu J, Meng H, et al. 2016. Map-based cloning, identification and characterization of the w gene controlling white immature fruit color in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics 129:1247−56

doi: 10.1007/s00122-016-2700-8
[7]

Hao N, Du Y, Li H, Wang C, Wang C, et al. 2018. CsMYB36 is involved in the formation of yellow green peel in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics 131:1659−69

doi: 10.1007/s00122-018-3105-7
[8]

Gebretsadik K, Qiu X, Dong S, Miao H, Bo K. 2021. Molecular research progress and improvement approach of fruit quality traits in cucumber. Theoretical and Applied Genetics 134:3535−52

doi: 10.1007/s00122-021-03895-y
[9]

Xie J, Wehner TC. 2001. Gene list 2001 for cucumber. Cucurbit Genet Coop Report 24:110−36

[10]

Zhang S, Liu S, Miao H, Wang M, Liu P, et al. 2016. Molecular mapping and candidate gene analysis for heavy netting gene (H) of mature fruit of cucumber (Cucumis sativus L.). Scientia Agricultura Sinica 47:1550−57

doi: 10.3864/j.issn.0578-1752.2014.08.011
[11]

Wang J, Fang X, Li X, Chen Y, Wan Z, et al. 2013. Genetic study on immature fruit color of cucumber. Acta Horticulturae Sinica 40:479−86

doi: 10.16420/j.issn.0513-353x.2013.03.012
[12]

Sun X, Wang Y, Wang B, Gu S, Wang Z, et al. 2004. Heredity of chlorophyll content in cucumber pericarp. Acta Horticulturae Sinica 31:5

doi: 10.16420/j.issn.0513-353x.2004.03.009
[13]

Li X. 2005. Descriptors and Data Standard for Cucumber (Cucumis sativus L.). Beijing: China Agricultural Press. (In Chinese)

[14]

Li P, Ma F, Cheng L. 2013. Primary and secondary metabolism in the sun-exposed peel and the shaded peel of apple fruit. Physiologia Plantarum 148:9−24

doi: 10.1111/j.1399-3054.2012.01692.x
[15]

Wang Z, Cui Y, Vainstein A, Chen S, Ma H. 2017. Regulation of fig (Ficus carica L.) fruit color: metabolomic and transcriptomic analyses of the flavonoid biosynthetic pathway. Frontiers in Plant Science 8:1990

doi: 10.3389/fpls.2017.01990
[16]

Wang X, Xu X, Chen X. 2022. Research progress in pulp color of horticultural crops. Molecular Plant Breeding (In Chinese) 20:1014−25

[17]

Brand A, Borovsky Y, Hill T, Rahman KAA, Bellalou A, et al. 2014. CaGLK2 regulates natural variation of chlorophyll content and fruit color in pepper fruit. Theoretical and Applied Genetics 127:2139−48

doi: 10.1007/s00122-014-2367-y
[18]

Nguyen CV, Vrebalov JT, Gapper NE, Zheng Y, Zhong S, et al. 2014. Tomato GOLDEN2-LIKE transcription factors reveal molecular gradients that function during fruit development and ripening. Plant Cell 26:585−601

doi: 10.1105/tpc.113.118794
[19]

Ni F, Wu L, Wang Q, Hong J, Qi Y, et al. 2017. Turnip yellow mosaic virus P69 interacts with and suppresses GLK transcription factors to cause pale-green symptoms in Arabidopsis. Molecular Plant 10:764−66

doi: 10.1016/j.molp.2016.12.003
[20]

Manoharan RK, Jung HJ, Hwang I, Jeong N, Kho KH, et al. 2017. Molecular breeding of a novel orange-brown tomato fruit with enhanced beta-carotene and chlorophyll accumulation. Hereditas 154:1

doi: 10.1186/s41065-016-0023-z
[21]

Ballester AR, Molthoff J, de Vos R, Hekkert BTL, Orzaez D, et al. 2010. Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. Plant Physiology 152:71−84

doi: 10.1104/pp.109.147322
[22]

Fernandez-Moreno JP, Tzfadia O, Forment J, Presa S, Rogachev I, et al. 2016. Characterization of a new pink-fruited tomato mutant results in the identification of a null allele of the SlMYB12 transcription factor. Plant Physiology 171:1821−31

doi: 10.1104/pp.16.00282
[23]

Gu X, Foley ME, Horvath DP, Anderson JV, Feng J, et al. 2011. Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice. Genetics 189:1515−24

doi: 10.1534/genetics.111.131169
[24]

Wang Y, Jiang B, Dymerski R, Xu X, Weng Y. 2021. Quantitative trait loci for horticulturally important traits defining the Sikkim cucumber, Cucumis sativus var. sikkimensis. Theoretical and Applied Genetics 134:229−247

doi: 10.1007/s00122-020-03693-y
[25]

Arya GC, Dong Y, Heinig U, Shahaf N, Kazachkova Y, et al. 2022. The metabolic and proteomic repertoires of periderm tissue in skin of the reticulated Sikkim cucumber fruit. Horticulture Research 9:uhac092

doi: 10.1093/hr/uhac092
[26]

Song M, Zhang M, Cheng F, Wei Q, Wang, et al. 2020. An irregularly striped rind mutant reveals new insight into the function of PG1B in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics 133:371−82

doi: 10.1007/s00122-019-03468-0
[27]

Deng Y, Li C, Li H, Lu S. 2018. Identification and characterization of flavonoid biosynthetic enzyme genes in Salvia miltiorrhiza (Lamiaceae). Molecules 23:1467

doi: 10.3390/molecules23061467
[28]

Muhlemann JK, Younts TLB, Muday GK. 2018. Flavonols control pollen tube growth and integrity by regulating ROS homeostasis during high-temperature stress. PNAS 115:E11188−E11197

doi: 10.1073/pnas.1811492115
[29]

Brodowska K. 2017. Natural flavonoids: Classification, potential role, and application of flavonoid analogues. European Journal of Biological Research 7:108−23

[30]

Grunewald W, de Smet I, Lewis DR, Löfke C, Jansen L, et al. 2012. Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis. PNAS 109:1554−59

doi: 10.1073/pnas.1121134109
[31]

Chen C, Zhou G, Chen J, Liu X, Lu X, et al. 2021. Integrated metabolome and transcriptome analysis unveils novel pathway involved in the formation of yellow peel in cucumber. Int J Mol Sci 22:1494

doi: 10.3390/ijms22031494
[32]

Li Y. 2008. SRAP molecular markers related to green character of cucumber pericarp. Thesis (In Chinese). Northwest A&F University, Shanxi Province.

[33]

Sun X, Shang Q, Qin Z. 2011. Study on inheritance of white pericarp color of cucumber tender fruit and AFLP markers. Northern Horticulture 3:135−140

[34]

Yang X, Zhang W, Li Y, He H, Bie B, et al. 2014. High-resolution mapping of the dull fruit skin gene D in cucumber (Cucumis sativus L.). Molecular Breeding 33:15−22

doi: 10.1007/s11032-013-9927-8
[35]

Tang H, Dong X, Wang J, Xia J, Xie F, et al. 2018. Fine mapping and candidate gene prediction for white immature fruit skin in cucumber (Cucumis sativus L.). International Journal of Molecular Sciences 19:1493

doi: 10.3390/ijms19051493
[36]

Dong X. 2015. Fine identification of white skin gene of cucumber tender fruit and genetic study on fruit hardness. Thesis. Huazhong Agricultural University, Hubei Province.

[37]

Peterson GC, Pike LM. 1992. Inheritance of Green Mature Seed-stage Fruit Color in Cucumis sativus L. Journal of the American Society for Horticultural Science 117:643−45

doi: 10.21273/JASHS.117.4.643
[38]

Miao H, Zhang S, Wang X, Zhang Z, Li M, et al. 2011. A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica 182:167−76

doi: 10.1007/s10681-011-0410-5
[39]

Wang Y, Bo K, Gu X, Pan J, Li Y, et al. 2020. Molecularly tagged genes and quantitative trait loci in cucumber with recommendations for QTL nomenclature. Horticulture Research 7:3

doi: 10.1038/s41438-019-0226-3
[40]

Liu M, Zhang C, Duan L, Luan Q, Li J, et al. 2019. CsMYB60 is a key regulator of flavonols and proanthocyanidans that determine the colour of fruit spines in cucumber. Journal of Experimental Botany 70:69−84

doi: 10.1093/jxb/ery336
[41]

Zhang J, Yang J, Yang Y, Luo J, Zheng X, et al. 2019. Transcription Factor CsWIN1 regulates pericarp wax biosynthesis in cucumber grafted on pumpkin. Frontiers in Plant Science 10:1564

doi: 10.3389/fpls.2019.01564
[42]

Wang W, Liu X, Gai X, Ren J, Liu X, et al. 2015. Cucumis sativus L. WAX2 plays a pivotal role in wax biosynthesis, influencing pollen fertility and plant biotic and abiotic stress responses. Plant and Cell Physiology 56:1339−54

doi: 10.1093/pcp/pcv052
[43]

Pagani S, Bonomi F, Cerletti P. 1984. Enzymic synthesis of the iron-sulfur cluster of spinach ferredoxin. European Journal of Biochemistry 142:361−66

doi: 10.1111/j.1432-1033.1984.tb08295.x
[44]

Hall DO, Gibson JF, Whatley FR. 1966. Electron spin resonance spectra of spinach ferredoxin-sciencedirect. Biochem Bioph Res CO 23:81−84

doi: 10.1016/0006-291X(66)90272-5
[45]

Palmer G, Sands RH. 1966. On the magnetic resonance of spinach ferredoxin. The Journal of Biological Chemistry 241:253

[46]

Zheng L, White RH, Cash VL, Jack RF, Dean DR. 1993. Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis. PNAS 90:2754−58

doi: 10.1073/pnas.90.7.2754
[47]

Beinert H, Holm R, Münck E. 1997. Iron-sulfur clusters: nature’s modular, multipurpose structures. Science 277:653−59

doi: 10.1126/science.277.5326.653
[48]

Imsande J. 1999. Iron-sulfur clusters: formation, perturbation, and physiological functions. Plant Physiology and Biochemistry 37:87−97

doi: 10.1016/S0981-9428(99)80070-9
[49]

Pavlista AD. 2005. Early-Season applications of sulfur fertilizers increase potato yield and reduce tuber defects. Agronomy Journal 97:599−603

doi: 10.2134/agronj2005.0599
[50]

Selles B, Moseler A, Rouhier N, Couturier J. 2019. Rhodanese domain-containing sulfurtransferases: multifaceted proteins involved in sulfur trafficking in plants. Journal of Experimental Botany 70(16):4139−54

doi: 10.1093/jxb/erz213
[51]

Zhang X. 2020. Genetic analysis and gene mapping of yellow peel in cucumber. Thesis. China Agricultural University, Beijing.

[52]

Bordo D, Bork P. 2002. The rhodanese/cdc25 phosphatase superfamily. EMBO Reports 3:741−46

doi: 10.1093/embo-reports/kvf150
[53]

Ran M. 2020. Sulfane sulfur quantification in biological samples and its metabolis by rhodanese. Dissertation. ShanDong Agricultural University, Shandong Province.

[54]

Luo L, Herrin DL. 2012. A novel rhodanese is required to maintain chloroplast translation in Chlamydomonas. Plant Molecular Biology 79:495−508

doi: 10.1007/s11103-012-9926-x
[55]

Jurić S, Hazler-Pilepić K, Tomasić A, Lepedus H, Jelicić B, et al. 2009. Tethering of ferredoxin: NADP+ oxidoreductase to thylakoid membranes is mediated by novel chloroplast protein TROL. The Plant Journal 60:783−94

doi: 10.1111/j.1365-313X.2009.03999.x
[56]

Lou Q, Liu Y, Qi Y, Jiao S, Tian F, et al. 2014. Transcriptome sequencing and metabolite analysis reveals the role of delphinidin metabolism in flower colour in grape hyacinth. Journal of Experimental Botany 65:3157−64

doi: 10.1093/jxb/eru168
[57]

Matus JT. 2016. Transcriptomic and metabolomic networks in the grape berry illustrate that it takes more than flavonoids to fight against ultraviolet radiation. Frontiers in Plant Science 7:1337

doi: 10.3389/fpls.2016.01337