[1]

Sanderson MA, Adler PR. 2008. Perennial forages as second generation bioenergy crops. International journal of molecular sciences 9:768−88

doi: 10.3390/ijms9050768
[2]

Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, et al. 2005. Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Technical Report. ORNL/TM-2005/66, Oak Ridge National Laboratory, Oak Ridge, Tennessee. www.osti.gov/biblio/1216415

[3]

Naik SN, Goud VV, Rout PK, Dalai AK. 2010. Production of first and second generation biofuels: a comprehensive review. Renewable and Sustainable Energy Reviews 14:578−97

doi: 10.1016/j.rser.2009.10.003
[4]

Jørgensen H, Kristensen JB, Felby C. 2007. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels, Bioproducts and Biorefining 1:119−34

doi: 10.1002/bbb.4
[5]

Sun Y, Cheng J. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology 83:1−11

doi: 10.1016/S0960-8524(01)00212-7
[6]

Lovell JT, MacQueen AH, Mamidi S, Bonnette J, Jenkins J, et al. 2021. Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass. Nature 590:438−44

doi: 10.1038/s41586-020-03127-1
[7]

Porter CL Jr. 1966. An analysis of variation between upland and lowland switchgrass, Panicum virgatum L., in central Oklahoma. Ecology 47:980−92

doi: 10.2307/1935646
[8]

Wullschleger SD, Davis EB, Borsuk ME, Gunderson CA, Lynd LR. 2010. Biomass production in switchgrass across the United States: database description and determinants of yield. Agronomy Journal 102:1158−68

doi: 10.2134/agronj2010.0087
[9]

McLaughlin SB, Adams Kszos L. 2005. Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass and Bioenergy 28:515−35

doi: 10.1016/j.biombioe.2004.05.006
[10]

Bouton JH. 2007. Molecular breeding of switchgrass for use as a biofuel crop. Current opinion in genetics & development 17:553−58

doi: 10.1016/j.gde.2007.08.012
[11]

Sanderson MA, Reed RL, McLaughlin SB, Wullschleger SD, Conger BV, et al. 1996. Switchgrass as a sustainable bioenergy crop. Bioresource Technology 56:83−93

doi: 10.1016/0960-8524(95)00176-X
[12]

McLaughlin S, Bouton J, Bransby D, Conger B, Ocumpaugh W, et al. 1999. Developing switchgrass as a bioenergy crop. In Perspectives on New Crops and New Uses, ed. Janick J. vol 282. Alexandria, VA: ASHS Press. pp. 282-99. www.researchgate.net/profile/W-Ocumpaugh-2/publication/47649519_Developing_Switchgrass_as_a_Bioenergy_Crop/links/54ca74970cf2c70ce521d8e5/Developing-Switchgrass-as-a-Bioenergy-Crop.pdf

[13]

Hopkins AA, Vogel KP, Moore KJ. 1993. Predicted and realized gains from selection for in vitro dry matter digestibility and forage yield in switchgrass. Crop Science 33:253−58

doi: 10.2135/cropsci1993.0011183X003300020007x
[14]

Taliaferro CM, Hopkins A. 2002. Breeding and selection of new switchgrass varieties for increased biomass production. Technical Report. ORNL/SUB-02-19XSY162C/01, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA. www.osti.gov/biblio/814564/

[15]

Sanderson MA, Adler PR, Boateng AA, Casler MD, Sarath G. 2006. Switchgrass as a biofuels feedstock in the USA. Canadian Journal of Plant Science 86:1315−25

doi: 10.4141/P06-136
[16]

Xu B, Escamilla-Treviño LL, Sathitsuksanoh N, Shen Z, Shen H, et al. 2011. Silencing of 4-coumarate: coenzyme A ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production. The New Phytologist 192:611−25

doi: 10.1111/j.1469-8137.2011.03830.x
[17]

Fu C, Xiao X, Xi Y, Ge Y, Chen F, et al. 2011. Downregulation of cinnamyl alcohol dehydrogenase (CAD) leads to improved saccharification efficiency in switchgrass. BioEnergy Research 4:153−64

doi: 10.1007/s12155-010-9109-z
[18]

Saathoff AJ, Sarath G, Chow EK, Dien BS, Tobias CM. 2011. Downregulation of cinnamyl-alcohol dehydrogenase in switchgrass by RNA silencing results in enhanced glucose release after cellulase treatment. PloS One 6:e16416

doi: 10.1371/journal.pone.0016416
[19]

Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, et al. 2011. Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proceedings of the National Academy of Sciences, USA 108:3803−8

doi: 10.1073/pnas.1100310108
[20]

Xu B, Huang L, Shen Z, Welbaum GE, Zhang X, et al. 2011. Selection and characterization of a new switchgrass (Panicum virgatum L.) line with high somatic embryogenic capacity for genetic transformation. Scientia Horticulturae 129:854−61

doi: 10.1016/j.scienta.2011.05.016
[21]

Mele G, Ori N, Sato Y, Hake S. 2003. The knotted1-like homeobox gene BREVIPEDICELLUS regulates cell differentiation by modulating metabolic pathways. Genes & Development 17:2088−93

doi: 10.1101/gad.1120003
[22]

Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, et al. 2005. Transcription switches for protoxylem and metaxylem vessel formation. Genes & Development 19:1855−60

doi: 10.1101/gad.1331305
[23]

Zhong R, Demura T, Ye Z. 2006. SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. The Plant Cell 18:3158−70

doi: 10.1105/tpc.106.047399
[24]

Zhong R, Ye Z. 2009. Transcriptional regulation of lignin biosynthesis. Plant Signaling & Behavior 4:1028−34

doi: 10.4161/psb.4.11.9875
[25]

Wuddineh WA, Mazarei M, Zhang J, Turner GB, Sykes RW, et al. 2016. Identification and overexpression of a Knotted1-like transcription factor in switchgrass (Panicum virgatum L.) for lignocellulosic feedstock improvement. Frontiers in Plant Science 7:520

doi: 10.3389/fpls.2016.00520
[26]

Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, et al. 2004. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. The Plant Cell 16:2463−80

doi: 10.1105/tpc.104.022897
[27]

Shi JX, Adato A, Alkan N, He Y, Lashbrooke J, et al. 2013. The tomato SlSHINE3 transcription factor regulates fruit cuticle formation and epidermal patterning. The New phytologist 197:468−80

doi: 10.1111/nph.12032
[28]

Meng S, Cao Y, Li H, Bian Z, Wang D, et al. 2019. PeSHN1 regulates water-use efficiency and drought tolerance by modulating wax biosynthesis in poplar. Tree Physiology 39:1371−86

doi: 10.1093/treephys/tpz033
[29]

Djemal R, Khoudi H. 2016. TdSHN1, a WIN1/SHN1-type transcription factor, imparts multiple abiotic stress tolerance in transgenic tobacco. Environmental and Experimental Botany 131:89−100

doi: 10.1016/j.envexpbot.2016.07.005
[30]

Martins APB, dos Santos Brito M, Mayer JLS, Llerena JPP, Oliveira JF, et al. 2018. Ectopic expression of sugarcane SHINE changes cell wall and improves biomass in rice. Biomass and Bioenergy 119:322−34

doi: 10.1016/j.biombioe.2018.09.036
[31]

Yang Y, Shi J, Chen L, Xiao W, Yu J. 2022. ZmEREB46, a maize ortholog of Arabidopsis WAX INDUCER1/SHINE1, is involved in the biosynthesis of leaf epicuticular very-long-chain waxes and drought tolerance. Plant Science 321:111256

doi: 10.1016/j.plantsci.2022.111256
[32]

Ambavaram MMR, Krishnan A, Trijatmiko KR, Pereira A. 2011. Coordinated activation of cellulose and repression of lignin biosynthesis pathways in rice. Plant Physiology 155:916−31

doi: 10.1104/pp.110.168641
[33]

Liu Y, Wei M, Hou C, Lu T, Liu L, et al. 2017. Functional characterization of populus PsnSHN2 in coordinated regulation of secondary wall components in tobacco. Scientific Reports 7:42

doi: 10.1038/s41598-017-00093-z
[34]

Bres C, Petit J, Reynoud N, Brocard L, Marion D, et al. 2022. The SlSHN2 transcription factor contributes to cuticle formation and epidermal patterning in tomato fruit. Molecular Horticulture 2:14

doi: 10.1186/s43897-022-00035-y
[35]

Xu B, Sathitsuksanoh N, Tang Y, Udvardi MK, Zhang J, et al. 2012. Overexpression of AtLOV1 in switchgrass alters plant architecture, lignin content, and flowering time. PLoS One 7:e47399

doi: 10.1371/journal.pone.0047399
[36]

Shen H, Poovaiah CR, Ziebell A, Tschaplinski TJ, Pattathil S, et al. 2013. Enhanced characteristics of genetically modified switchgrass (Panicum virgatum L.) for high biofuel production. Biotechnology for Biofuels 6:71

doi: 10.1186/1754-6834-6-71
[37]

Wuddineh WA, Mazarei M, Turner GB, Sykes RW, Decker SR, et al. 2015. Identification and molecular characterization of the switchgrass AP2/ERF transcription factor superfamily, and overexpression of PvERF001 for improvement of biomass characteristics for biofuel. Frontiers in Bioengineering and Biotechnology 3:101

doi: 10.3389/fbioe.2015.00101
[38]

Jiang F, Guo M, Yang F, Duncan K, Jackson D, et al. 2012. Mutations in an AP2 transcription factor-like gene affect internode length and leaf shape in maize. PLoS One 7:e37040

doi: 10.1371/journal.pone.0037040
[39]

Molina A, Miedes E, Bacete L, Rodríguez T, Mélida H, et al. 2021. Arabidopsis cell wall composition determines disease resistance specificity and fitness. Proceedings of the National Academy of Sciences 118:e2010243118

doi: 10.1073/pnas.2010243118
[40]

Buxdorf K, Rubinsky G, Barda O, Burdman S, Aharoni A, Levy M. 2014. The transcription factor SlSHINE3 modulates defense responses in tomato plants. Plant molecular biology 84:37−47

doi: 10.1007/s11103-013-0117-1
[41]

Al-Abdallat AM, Al-Debei HS, Ayad JY, Hasan S. 2014. Over-expression of SlSHN1 gene improves drought tolerance by increasing cuticular wax accumulation in tomato. International journal of molecular sciences 15:19499−515

doi: 10.3390/ijms151119499
[42]

Ching A, Dhugga KS, Appenzeller L, Meeley R, Bourett TM, et al. 2006. Brittle stalk 2 encodes a putative glycosylphosphatidylinositol-anchored protein that affects mechanical strength of maize tissues by altering the composition and structure of secondary cell walls. Planta 224:1174−84

doi: 10.1007/s00425-006-0299-8
[43]

Wan G, Frazier T, Jorgensen J, Zhao B, Frazier CE. 2018. Rheology of transgenic switchgrass reveals practical aspects of biomass processing. Biotechnology for Biofuels 11:57

doi: 10.1186/s13068-018-1056-5
[44]

Li R, Qu R. 2011. High throughput Agrobacterium-mediated switchgrass transformation. Biomass and Bioenergy 35:1046−54

doi: 10.1016/j.biombioe.2010.11.025
[45]

Porebski S, Bailey LG, Baum BR. 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter 15:8−15

doi: 10.1007/BF02772108
[46]

Pradhan Mitra P, Loqué D. 2014. Histochemical staining of Arabidopsis thaliana secondary cell wall elements. Journal of Visualized Experiments:e51381

doi: 10.3791/51381
[47]

Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D. 2005. Determination of extractives in biomass. Laboratory Analytical Procedure, Technical Report NREL/TP-510-42619. 1617: 1−16. www.nrel.gov/docs/gen/fy08/42619.pdf

[48]

Bartley LE, Peck ML, Kim SR, Ebert B, Manisseri C, et al. 2013. Overexpression of a BAHD acyltransferase, OsAt10, alters rice cell wall hydroxycinnamic acid content and saccharification. Plant Physiology 161:1615−33

doi: 10.1104/pp.112.208694
[49]

Gustafson DM, Boe A, Jin Y. 2003. Genetic variation for Puccinia emaculata infection in switchgrass. Crop Science 43:755−59

doi: 10.2135/cropsci2003.7550