[1]

Gabellini S, Scaramuzzi S. 2022. Evolving consumption trends, marketing strategies, and governance settings in ornamental horticulture: A grey literature review. Horticulturae 8(3):234

doi: 10.3390/horticulturae8030234
[2]

Noda N, Yoshioka S, Kishimoto S, Nakayama M, Douzono M, et al. 2017. Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism. Science Advances 3(7):e1602785

doi: 10.1126/sciadv.1602785
[3]

Carroll D. 2011. Genome engineering with zinc-finger nucleases. Genetics 188(4):773−82

doi: 10.1534/genetics.111.131433
[4]

Joung JK, Sander JD. 2013. TALENs: a widely applicable technology for targeted genome editing. Nature Reviews Molecular Cell Biology 14(1):49−55

doi: 10.1038/nrm3486
[5]

Richter C, Chang JT, Fineran PC. 2012. Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. Viruses 4(10):2291−311

doi: 10.3390/v4102291
[6]

Durai S, Mani M, Kandavelou K, Wu J, Porteus M H, et al. 2005. Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Research 33:5978−90

doi: 10.1093/nar/gki912
[7]

Lloyd A, Plaisier CL, Carroll D, Drews GN. 2005. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proceedings of the National Academy of Sciences 102(6):2232−37

doi: 10.1073/pnas.0409339102
[8]

Anonimous. 2012. Method of the year 2011. Nature Methods 9:1

doi: 10.1038/nmeth.1852
[9]

Mahfouz MM, Li L, Shamimuzzaman M, Wibowo A, Fang X, et al. 2011. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proceedings of the National Academy of Sciences 108(6):2623−28

doi: 10.1073/pnas.1019533108
[10]

Jansen R, van Embden JDA, Gaastra W, Schouls LM. 2002. Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology 43(6):1565−75

doi: 10.1046/j.1365-2958.2002.02839.x
[11]

Mojica FJM, Díez-Villaseñor C, Soria E, Juez Gez G. 2000. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Molecular microbiology 36(1):244−46

doi: 10.1046/j.1365-2958.2000.01838.x
[12]

Bortesi L, Fischer R. 2015. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology advances 33(1):41−52

doi: 10.1016/j.biotechadv.2014.12.006
[13]

Kumar V, Jain M. 2015. The CRISPR–Cas system for plant genome editing: advances and opportunities. Journal of experimental botany 66(1):47−57

doi: 10.1093/jxb/eru429
[14]

Marzec M, Brąszewska-Zalewska A, Hensel G. 2020. Prime editing: a new way for genome editing. Trends in Cell Biology 30(4):257−59

doi: 10.1016/j.tcb.2020.01.004
[15]

Yang B, Yang L, Chen J. 2019. Development and application of base editors. The CRISPR Journal 2(2):91−104

doi: 10.1089/crispr.2019.0001
[16]

Huang S, Yan Y, Su F, Huang X, Xia D, et al. 2021. Research progress in gene editing technology. Frontiers in Bioscience-Landmark 26(10):916−27

doi: 10.52586/4997
[17]

Zhan X, Lu Y, Zhu JK, Botella JR. 2021. Genome editing for plant research and crop improvement. Journal of Integrative Plant Biology 63(1):3−33

doi: 10.1111/jipb.13063
[18]

Li JF, Norville JE, Aach J, McCormack M, Zhang D, et al. 2013. Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology 31(8):688−91

doi: 10.1038/nbt.2654
[19]

Fan D, Liu T, Li C, Jiao B, Li S, Hou Y, et al. 2015. Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Scientific Reports 5(1):12217

doi: 10.1038/srep12217
[20]

Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, et al. 2015. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiology 169(2):931−45

doi: 10.1104/pp.15.00793
[21]

Shan Q, Zhang Y, Chen K, Zhang K, Gao C. 2015. Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnology Journal 13(6):791−800

doi: 10.1111/pbi.12312
[22]

Wang W, Simmonds J, Pan Q, Davidson D, He F, et al. 2018. Gene editing and mutagenesis reveal inter-cultivar differences and additivity in the contribution of TaGW2 homoeologues to grain size and weight in wheat. Theoretical and Applied Genetics 131(11):2463−75

doi: 10.1007/s00122-018-3166-7
[23]

Su S, Xiao W, Guo W, Yao X, Xiao J, et al. 2017. The CYCLOIDEA–RADIALIS module regulates petal shape and pigmentation, leading to bilateral corolla symmetry in Torenia fournieri (Linderniaceae). New Phytologist 215(4):1582−93

doi: 10.1111/nph.14673
[24]

Lin CS, Hsu CT, Liao DC, Chang WJ, Chou ML, et al. 2016. Transcriptome-wide analysis of the MADS-box gene family in the orchid Erycina pusilla. Plant Biotechnology Journal 14(1):284−98

doi: 10.1111/pbi.12383
[25]

Tong CG, Wu FH, Yuan YH, Chen YR, Lin CS. 2020. High-efficiency CRISPR/Cas-based editing of Phalaenopsis orchid MADS genes. Plant Biotechnology Journal 18(4):889

doi: 10.1111/pbi.13264
[26]

Nishihara M, Higuchi A, Watanabe A, Tasaki K. 2018. Application of the CRISPR/Cas9 system for modification of flower color in Torenia fournieri. BMC Plant Biology 18:331

doi: 10.1186/s12870-018-1539-3
[27]

Yu J, Tu L, Subburaj S, Bae S, Lee GJ. 2021. Simultaneous targeting of duplicated genes in Petunia protoplasts for flower color modification via CRISPR-Cas9 ribonucleoproteins. Plant Cell Reports 40(6):1037−45

doi: 10.1007/s00299-020-02593-1
[28]

Watanabe K, Oda-Yamamizo C, Sage-Ono K, Ohmiya A, Ono M. 2018. Alteration of flower colour in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4. Transgenic Research 27(1):25−38

doi: 10.1007/s11248-017-0051-0
[29]

Tasaki K, Yoshida M, Nakajima M, Higuchi A, Watanabe A, et al. 2020. Molecular characterization of an anthocyanin-related glutathione S-transferase gene in Japanese gentian with the CRISPR/Cas9 system. BMC Plant Biology 20(1):370

doi: 10.1186/s12870-020-02565-3
[30]

Watanabe K, Kobayashi A, Endo M, Sage-Ono K, Toki S, et al. 2017. CRISPR/Cas9-mediated mutagenesis of the dihydroflavonol-4-reductase-B (DFR-B) locus in the Japanese morning glory Ipomoea (Pharbitis) nil. Scientific Reports 7:10028

doi: 10.1038/s41598-017-10715-1
[31]

Shibuya K, Watanabe K, Ono M. 2018. CRISPR/Cas9-mediated mutagenesis of the EPHEMERAL1 locus that regulates petal senescence in Japanese morning glory. Plant Physiology and Biochemistry 131:53−57

doi: 10.1016/j.plaphy.2018.04.036
[32]

Wang C, Li Y, Wang N, Yu Q, Li Y, et al. 2022. An efficient CRISPR/Cas9 platform for targeted genome editing in rose (Rosa hybrida). Journal of Integrative Plant Biology Early View

doi: 10.1111/jipb.13421
[33]

Xu J, Kang BC, Naing AH, Bae SJ, Kim JS, et al. 2020. CRISPR/Cas9-mediated editing of 1-aminocyclopropane-1-carboxylate oxidase1 enhances Petunia flower longevity. Plant biotechnology journal 18(1):287−97

doi: 10.1111/pbi.13197
[34]

Kishi-Kaboshi M, Aida R, Sasaki K. 2017. Generation of gene-edited Chrysanthemum morifolium using multicopy transgenes as targets and markers. Plant and Cell Physiology 58(2):216−26

doi: 10.1093/pcp/pcw222
[35]

Yan R, Wang Z, Ren Y, Li H, Liu N, et al. 2019. Establishment of efficient genetic transformation systems and application of CRISPR/Cas9 genome editing technology in Lilium pumilum DC. Fisch. and Lilium longiflorum White Heaven. International Journal of Molecular Sciences 20(12):2920

doi: 10.3390/ijms20122920
[36]

Kui L, Chen H, Zhang W, He S, Xiong Z, et al. 2017. Building a genetic manipulation tool box for orchid biology: identification of constitutive promoters and application of CRISPR/Cas9 in the orchid, Dendrobium officinale. Frontiers in Plant Science 7:2036

doi: 10.3389/fpls.2016.02036
[37]

Sun L, Kao TH. 2018. CRISPR/Cas9-mediated knockout of PiSSK1 reveals essential role of S-locus F-box protein-containing SCF complexes in recognition of non-self S-RNases during cross-compatible pollination in self-incompatible Petunia inflata. Plant Reproduction 31(2):129−43

doi: 10.1007/s00497-017-0314-1
[38]

Kim JB. 2020. Current status on applications of conventional breeding techniques and biotechnological system in ornamentals. Journal of Plant Biotechnology 47(2):107−17

doi: 10.5010/JPB.2020.47.2.107
[39]

Komari T, Hiei Y, Ishida Y, Kumashiro T, Kubo T. 1998. Advances in cereal gene transfer. Current opinion in Plant Biology 1(2):161−65

doi: 10.1016/S1369-5266(98)80019-8
[40]

Meyer V, Mueller D, Strowig T, Stahl U. 2003. Comparison of different transformation methods for Aspergillus giganteus. Current Genetics 43(5):371−77

doi: 10.1007/s00294-003-0406-3
[41]

Klein TM, Wolf ED, Wu R, Sanford JC. 1987. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70−73

doi: 10.1038/327070a0
[42]

Sirohi U, Kumar M, Sharma VR, Teotia S, Singh D, et al. 2022. CRISPR/Cas9 system: A potential tool for genetic improvement in floricultural crops. Molecular Biotechnology 64:1303−18

doi: 10.1007/s12033-022-00523-y
[43]

Ren F, Ren C, Zhang Z, Duan W, Lecourieux D, et al. 2019. Efficiency optimization of CRISPR/Cas9-mediated targeted mutagenesis in grape. Frontiers in Plant Science 10:612

doi: 10.3389/fpls.2019.00612
[44]

Massel K, Lam Y, Hintzsche J, Lester N, Botella JR, et al. 2022. Endogenous U6 promoters improve CRISPR/Cas9 editing efficiencies in Sorghum bicolor and show potential for applications in other cereals. Plant Cell Reports 41(2):489−92

doi: 10.1007/s00299-021-02816-z
[45]

Zheng X, Qi C, Yang L, Quan Q, Liu B, et al. 2020. The improvement of CRISPR-Cas9 system with ubiquitin-associated domain fusion for efficient plant genome editing. Frontiers in Plant Science 11:621

doi: 10.3389/fpls.2020.00621
[46]

Li C, Li W, Zhou Z, Chen H, Xie C, et al. 2020. A new rice breeding method: CRISPR/Cas9 system editing of the Xa13 promoter to cultivate transgene-free bacterial blight-resistant rice. Plant Biotechnology Journal 18(2):313

doi: 10.1111/pbi.13217
[47]

Li T, Yang X, Yu Y, Si X, Zhai X, et al. 2018. Domestication of wild tomato is accelerated by genome editing. Nature Biotechnology 36:1160−63

doi: 10.1038/nbt.4273
[48]

Schwartz C, Lenderts B, Feigenbutz L, Barone P, Llaca V, et al. 2020. CRISPR–Cas9-mediated 75.5-Mb inversion in maize. Nature Plant 6:1427−31

doi: 10.1038/s41477-020-00817-6
[49]

Beying N, Schmidt C, Pacher M, Houben A, Puchta H. 2020. CRISPR–Cas9-mediated induction of heritable chromosomal translocations in Arabidopsis. Nature Plants 6(6):638−45

doi: 10.1038/s41477-020-0663-x
[50]

Wang W, Wang W, Pan Y, Tan C, Li H, et al. 2022. A new gain-of-function OsGS2/GRF4 allele generated by CRISPR/Cas9 genome editing increases rice grain size and yield. The Crop Journal 10:1207−12

doi: 10.1016/j.cj.2022.01.004
[51]

Ramirez-Torres F, Ghogare R, Stowe E, Cerdá-Bennasser P, Lobato-Gómez M, et al. 2021. Genome editing in fruit, ornamental, and industrial crops. Transgenic Research 30:499−528

doi: 10.1007/s11248-021-00240-3