[1]

Dickens JE. 2010. Overview of Process Analysis and PAT. In Process Analytical Technology: Spectroscopic Tools and Implementation Strategies for the Chemical and Pharmaceutical Industries, ed. Bakeev KA. Second Edition. West Sussex, UK: John Wiley & Sons, Ltd. pp. 1−15. https://doi.org/10.1002/9780470689592.ch1

[2]

Miller CE. 2010. Chemometrics in Process Analytical Technology (PAT). In Process Analytical Technology: Spectroscopic Tools and Implementation Strategies for the Chemical and Pharmaceutical Industries, ed. Bakeev KA. Second Edition. West Sussex, UK: John Wiley & Sons, Ltd. pp. 353−438. https://doi.org/10.1002/9780470689592.ch12

[3]

Cavaglia J, Schorn-García D, Giussani B, Ferré J, Busto O, et al. 2020. Monitoring wine fermentation deviations using an ATR-MIR spectrometer and MSPC charts. Chemometrics and Intelligent Laboratory Systems 201:104011

doi: 10.1016/j.chemolab.2020.104011
[4]

Hennigan MC, Ryder AG. 2013. Quantitative polymorph contaminant analysis in tablets using Raman and near infra-red spectroscopies. Journal of Pharmaceutical and Biomedical Analysis 72:163−71

doi: 10.1016/j.jpba.2012.10.002
[5]

Mantanus J, Rozet E, Van Butsele K, De Bleye C, Ceccato A, et al. 2011. Near infrared and Raman spectroscopy as Process Analytical Technology tools for the manufacturing of silicone-based drug reservoirs. Analytica Chimica Acta 699(1):96−106

doi: 10.1016/j.aca.2011.05.006
[6]

Mustorgi E, Malegori C, Oliveri P, Hooshyary M, Bounneche H, et al. 2020. A chemometric strategy to evaluate the comparability of PLS models obtained from quartz cuvettes and disposable glass vials in the determination of extra virgin olive oil quality parameters by NIR spectroscopy. Chemometrics and Intelligent Laboratory Systems 199:103974

doi: 10.1016/j.chemolab.2020.103974
[7]

Roussel S, Preys S, Chauchard F, Lallemand J. 2014. Multivariate Data Analysis (Chemometrics). In Process Analytical Technology for the Food Industry, eds. O'Donnell CP, Fagan C, Cullen PJ. pp. 7−59. https://doi.org/10.1007/978-1-4939-0311-5_2

[8]

Svendsen C, Cieplak T, van den Berg FWJ. 2016. Exploring process dynamics by near infrared spectroscopy in lactic fermentations. Journal of Near Infrared Spectroscopy 24(5):443−51

doi: 10.1255/jnirs.1244
[9]

van den Berg F, Lyndgaard CB, Sørensen KM, Engelsen SB. 2013. Process Analytical Technology in the food industry. Trends in Food Science & Technology 31(1):27−35

doi: 10.1016/j.jpgs.2012.04.007
[10]

Cobbledick J, Nguyen A, Latulippe DR. 2014. Demonstration of FBRM as process analytical technology tool for dewatering processes via CST correlation. Water Research 58:132−40

doi: 10.1016/j.watres.2014.03.068
[11]

Rathore AS, Bhambure R, Ghare V. 2010. Process analytical technology (PAT) for biopharmaceutical products. Analytical and bioanalytical chemistry 398:137−54

doi: 10.1007/s00216-010-3781-x
[12]

Akseli I, Mani GN, Cetinkaya C. 2008. Non-destructive acoustic defect detection in drug tablets. International Journal of Pharmaceutics 360(1):65−76

doi: 10.1016/j.ijpharm.2008.04.019
[13]

Medendorp J, Lodder RA. 2006. Acoustic-resonance spectrometry as a process analytical technology for rapid and accurate tablet identification. AAPS PharmSciTech 7:25

doi: 10.1208/pt070125
[14]

Mantanus J, Ziémons E, Lebrun P, Rozet E, Klinkenberg R, et al. 2010. Active content determination of non-coated pharmaceutical pellets by near infrared spectroscopy: Method development, validation and reliability evaluation. Talanta 80(5):1750−57

doi: 10.1016/j.talanta.2009.10.019
[15]

Paris I, Janoly-Dumenil A, Paci A, Mercier L, Bourget P, et al. 2006. Near infrared spectroscopy and process analytical technology to master the process of busulfan paediatric capsules in a university hospital. Journal of Pharmaceutical and Biomedical Analysis 41(4):1171−78

doi: 10.1016/j.jpba.2006.02.049
[16]

Wu H, White M, Khan MA. 2011. Quality-by-Design (QbD): An integrated process analytical technology (PAT) approach for a dynamic pharmaceutical co-precipitation process characterization and process design space development. International Journal of Pharmaceutics 405(1):63−78

doi: 10.1016/j.ijpharm.2010.11.045
[17]

Moscetti R, Massantini R, Fidaleo M. 2019. Application on-line NIR spectroscopy and other process analytical technology tools to the characterization of soy sauce desalting by electrodialysis. Journal of Food Engineering 263:243−52

doi: 10.1016/j.jfoodeng.2019.06.022
[18]

Wang X, Esquerre C, Downey G, Henihan L, O’Callaghan D, et al. 2018. Assessment of infant formula quality and composition using Vis-NIR, MIR and Raman process analytical technologies. Talanta 183:320−28

doi: 10.1016/j.talanta.2018.02.080
[19]

Arango O, Trujillo AJ, Castillo M. 2020. Inline control of yoghurt fermentation process using a near infrared light backscatter sensor. Journal of Food Engineering 277:109885

doi: 10.1016/j.jfoodeng.2019.109885
[20]

Nallan Chakravartula SS, Cevoli C, Balestra F, Fabbri A, Dalla Rosa M. 2019. Evaluation of drying of edible coating on bread using NIR spectroscopy. Journal of Food Engineering 240:29−37

doi: 10.1016/j.jfoodeng.2018.07.009
[21]

Pehrsson PR, Patterson KY, Khan MA. 2014. Selected vitamins, minerals and fatty acids in infant formulas in the United States. Journal of Food Composition and Analysis 36(1):66−71

doi: 10.1016/j.jfca.2014.06.004
[22]

Koc H, Mar MH, Ranasinghe A, Swenberg JA, Zeisel SH. 2002. Quantitation of Choline and Its Metabolites in Tissues and Foods by Liquid Chromatography/Electrospray Ionization-Isotope Dilution Mass Spectrometry. Analytical Chemistry 74(18):4734−40

doi: 10.1021/ac025624x
[23]

Patterson KY, Phillips KM, Horst RL, Byrdwell WC, Exler J, et al. 2010. Vitamin D content and variability in fluid milks from a US Department of Agriculture nationwide sampling to update values in the National Nutrient Database for Standard Reference. Journal of Dairy Science 93(11):5082−90

doi: 10.3168/jds.2010-3359
[24]

Saini RK, Keum YS. 2018. Carotenoid extraction methods: A review of recent developments. Food Chemistry 240:90−103

doi: 10.1016/j.foodchem.2017.07.099
[25]

Wehling RL. 2010. Infrared Spectroscopy. In Food Analysis. 4th Edition. Boston, MA: Springer. pp. 407−20. https://doi.org/10.1007/978-1-4419-1478-1_23

[26]

Hof M, Macháň R. 2003. Basics of Optical Spectroscopy. In Handbook of Spectroscopy. Second Edition. Weinheim, Germany: John Wiley & Sons, Ltd. pp. 31−38. https://doi.org/10.1002/9783527654703.ch3

[27]

Khan A, Munir MT, Yu W, Young BR. 2021. Near-infrared spectroscopy and data analysis for predicting milk powder quality attributes. International Journal of Dairy Technology 74(1):235−45

doi: 10.1111/1471-0307.12734
[28]

Beć KB, Grabska J, Huck CW. 2020. Near-Infrared Spectroscopy in Bio-Applications. Molecules 25(12):2948

doi: 10.3390/molecules25122948
[29]

Fagan CC. 2014. Infrared Spectroscopy. In Process Analytical Technology for the Food Industry. First Edition. New York: Springer. pp. 73-101. https://doi.org/10.1007/978-1-4939-0311-5_4

[30]

Ingle PD, Christian R, Purohit P, Zarraga V, Handley E, et al. 2016. Determination of Protein Content by NIR Spectroscopy in Protein Powder Mix Products. Journal of AOAC International 99(2):360−63

doi: 10.5740/jaoacint.15-0115
[31]

Osborne BG. 2006. Near-Infrared Spectroscopy in Food Analysis. In Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation. New Jersey: John Wiley & Sons, Ltd. pp. 1−14. https://doi.org/10.1002/9780470027318.a1018

[32]

Pu YY, O’Donnell C, Tobin JT, O’Shea N. 2020. Review of near-infrared spectroscopy as a process analytical technology for real-time product monitoring in dairy processing. International Dairy Journal 103:104623

doi: 10.1016/j.idairyj.2019.104623
[33]

Damodaran S. 2017. Amino Acids, Peptides, and Proteins. In Fennema's Food Chemistry. 5th Edition. Boca Raton: CRC Press. pp. 217−331. https://doi.org/10.1201/9781315372914

[34]

Damodaran S, BeMiller JN, Huber KC. 2017. Carbohydrates. In Fennema's Food Chemistry. 5th Edition. Boca Raton: CRC Press. pp. 83−155. https://doi.org/10.1201/9781315372914

[35]

Krimm S, Bandekar J. 1986. Vibrational Spectroscopy and Conformation of Peptides, Polypeptides, and Proteins. Advances in Protein Chemistry 38:181−364

doi: 10.1016/S0065-3233(08)60528-8
[36]

Parker FS. 1971. Amides and Amines. In Applications of Infrared Spectroscopy in Biochemistry, Biology, and Medicine. First Edition. Boston, MA: Springer. pp. 165−72. https://doi.org/10.1007/978-1-4684-1872-9_8

[37]

Wiercigroch E, Szafraniec E, Czamara K, Pacia MZ, Majzner K, et al. 2017. Raman and infrared spectroscopy of carbohydrates: A review. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 185:317−35

doi: 10.1016/j.saa.2017.05.045
[38]

Gregory III JF. 2017. Vitamins. In Fennema's Food Chemistry. 5th Edition. Boca Raton: CRC Press. pp. 439−532. https://doi.org/10.1201/9781315372914

[39]

Liu H, Xiang B, Qu L. 2006. Structure analysis of ascorbic acid using near-infrared spectroscopy and generalized two-dimensional correlation spectroscopy. Journal of Molecular Structure 794(1):12−17

doi: 10.1016/j.molstruc.2006.01.028
[40]

Yang H, Irudayaraj J. 2002. Rapid determination of vitamin C by NIR, MIR and FT-Raman techniques. Journal of Pharmacy and Pharmacology 54(9):1247−55

doi: 10.1211/002235702320402099