[1] |
Ni H, Hong P, Ji H, Sun H, Chen Y, et al. 2015. Comparative analyses of aromas of fresh, naringinase-treated and resin-absorbed juices of pummelo by GC-MS and sensory evaluation. Flavour and Fragrance Journal 30:245−53 doi: 10.1002/ffj.3239 |
[2] |
Chen X, Xu X, Lu Z, Zhang W, Yang J, et al. 2020. Carbon footprint of a typical pomelo production region in China based on farm survey data. Journal of Cleaner Production 277:124041 doi: 10.1016/j.jclepro.2020.124041 |
[3] |
Lu X, Zhao C, Shi H, Liao Y, Xu F, et al. 2021. Nutrients and bioactives in citrus fruits: Different citrus varieties, fruit parts, and growth stages. Critical Reviews in Food Science and Nutrition 0:1−24 doi: 10.1080/10408398.2021.1969891 |
[4] |
Zhu C, Lu Q, Zhou X, Li J, Yue J, et al. 2020. Metabolic variations of organic acids, amino acids, fatty acids and aroma compounds in the pulp of different pummelo varieties. LWT 130:109445 doi: 10.1016/j.lwt.2020.109445 |
[5] |
Vivian Goh RM, Lau H, Liu S, Lassabliere B, Guervilly R, et al. 2019. Comparative analysis of pomelo volatiles using headspace-solid phase micro-extraction and solvent assisted flavour evaporation. LWT 99:328−45 doi: 10.1016/j.lwt.2018.09.073 |
[6] |
Nishad J, Singh SP, Singh S, Saha S, Dubey AK, et al. 2018. Bioactive compounds and antioxidant activity of selected Indian pummelo (Citrus grandis L. Osbeck) germplasm. Scientia Horticulturae 233:446−54 doi: 10.1016/j.scienta.2018.01.024 |
[7] |
González-Mas MC, Rambla JL, López-Gresa MP, Blázquez MA, Granell A. 2019. Volatile compounds in citrus essential oils: A comprehensive review. Frontiers in Plant Science 10:12 doi: 10.3389/fpls.2019.00012 |
[8] |
Tocmo R, Pena-Fronteras J, Calumba KF, Mendoza M, Johnson JJ. 2020. Valorization of pomelo (Citrus grandis Osbeck) peel: A review of current utilization, phytochemistry, bioactivities, and mechanisms of action. Comprehensive Reviews in Food Science and Food Safety 19:1969−2012 doi: 10.1111/1541-4337.12561 |
[9] |
Sun H, Ni H, Yang Y, Chen F, Cai H, et al. 2014. Sensory evaluation and gas chromatography-mass spectrometry (GC-MS) analysis of the volatile extracts of pummelo (Citrus maxima) peel. Flavour and Fragrance Journal 29:305−12 doi: 10.1002/ffj.3206 |
[10] |
Cheong MW, Liu SQ, Yeo J, Chionh HK, Pramudya K, et al. 2011. Identification of aroma-active compounds in Malaysian pomelo (Citrus grandis (L.) Osbeck) peel by gas chromatography-olfactometry. Journal of Essential Oil Research 23:34−42 doi: 10.1080/10412905.2011.9712279 |
[11] |
Liu C, Yan F, Gao H, He M, Wang Z, et al. 2015. Features of citrus terpenoid production as revealed by carotenoid, limonoid and aroma profiles of two pummelos (Citrus maxima) with different flesh color. Journal of the Science of Food and Agriculture 95:111−19 doi: 10.1002/jsfa.6689 |
[12] |
Zhang M, Li L, Wu Z, Wang Y, Zang Y, et al. 2017. Volatile composition in two pummelo cultivars (Citrus grandis L. Osbeck) from different cultivation regions in China. Molecules 22:716 doi: 10.3390/molecules22050716 |
[13] |
Jain A, Ornelas-Paz J, Obenland D, Rodriguez (Friscia) K, Prakash A. 2017. Effect of phytosanitary irradiation on the quality of two varieties of pummelos (Citrus maxima (Burm.) Merr.). Scientia Horticulturae 217:36−47 doi: 10.1016/j.scienta.2017.01.029 |
[14] |
Sun H, Ni H, Yang Y, Wu L, Cai H, et al. 2014. Investigation of sunlight-induced deterioration of aroma of pummelo (Citrus maxima) essential oil. Journal of Agricultural and Food Chemistry 62:11818−30 doi: 10.1021/jf504294g |
[15] |
Sun H, Ni H, Chen F, Jiang Z, Huang G, et al. 2018. Effect of oxygen and heating on aromas of pummelo (Citrus maxima) essential oil. Journal of Essential Oil Research 30:92−104 doi: 10.1080/10412905.2017.1420553 |
[16] |
Miyazaki T, Plotto A, Goodner K, Gmitter FG, Jr. 2011. Distribution of aroma volatile compounds in tangerine hybrids and proposed inheritance. Journal of the Science of Food and Agriculture 91:449−60 doi: 10.1002/jsfa.4205 |
[17] |
Alquézar B, Rodríguez A, de la Peña M, Peña L. 2017. Genomic analysis of terpene synthase family and functional characterization of seven sesquiterpene synthases from Citrus sinensis. Frontiers in Plant Science 8:1481 doi: 10.3389/fpls.2017.01481 |
[18] |
Sharon-Asa L, Shalit M, Frydman A, Bar E, Holland D, et al. 2003. Citrus fruit flavor and aroma biosynthesis: isolation, functional characterization, and developmental regulation of Cstps1, a key gene in the production of the sesquiterpene aroma compound valencene. The Plant Journal 36:664−74 doi: 10.1046/j.1365-313X.2003.01910.x |
[19] |
Zhang H, Chen M, Wen H, Wang Z, Chen J, et al. 2020. Transcriptomic and metabolomic analyses provide insight into the volatile compounds of citrus leaves and flowers. BMC Plant Biology 20:7 doi: 10.1186/s12870-019-2222-z |
[20] |
Shimada T, Endo T, Fujii H, Hara M, Ueda T, et al. 2004. Molecular cloning and functional characterization of four monoterpene synthase genes from Citrus unshiu Marc. Plant Science 166:49−58 doi: 10.1016/j.plantsci.2003.07.006 |
[21] |
Shimada T, Endo T, Fujii H, Omura M. 2005. Isolation and characterization of a new d-limonene synthase gene with a different expression pattern in Citrus unshiu Marc. Scientia Horticulturae 105:507−12 doi: 10.1016/j.scienta.2005.02.009 |
[22] |
Shimada T, Endo T, Rodríguez A, Fujii H, Nakano M, et al. 2012. Isolation and characterization of germacrene A synthases gene in Citrus unshiu Marc. Scientia Horticulturae 145:102−8 doi: 10.1016/j.scienta.2012.08.001 |
[23] |
Shimada T, Endo T, Fujii H, Hara M, Omura M. 2005. Isolation and characterization of (E)-beta-ocimene and 1, 8 cineole synthases in Citrus unshiu Marc. Plant Science 168:987−95 doi: 10.1016/j.plantsci.2004.11.012 |
[24] |
Kohzaki K, Gomi K, Yamasaki-Kokudo Y, Ozawa R, Takabayashi J, et al. 2009. Characterization of a sabinene synthase gene from rough lemon (Citrus jambhiri). Journal of Plant Physiology 166:1700−4 doi: 10.1016/j.jplph.2009.04.003 |
[25] |
Xu Y, Wu B, Cao X, Zhang B, Chen K. 2017. Citrus CmTPS1 is associated with formation of sesquiterpene bicyclogermacrene. Scientia Horticulturae 226:133−40 doi: 10.1016/j.scienta.2017.08.032 |
[26] |
Shen S, Yin X, Zhang B, Xie X, Jiang Q, et al. 2016. CitAP2.10 activation of the terpene synthase CsTPS1 is associated with the synthesis of (+)-valencene in 'Newhall' orange. Journal of Experimental Botany 67:4105−15 doi: 10.1093/jxb/erw189 |
[27] |
Li X, Xu Y, Shen S, Yin X, Klee H, et al. 2017. Transcription factor CitERF71 activates the terpene synthase gene CitTPS16 involved in the synthesis of E-geraniol in sweet orange fruit. Journal of Experimental Botany 68:4929−38 doi: 10.1093/jxb/erx316 |
[28] |
Perez-Cacho PR, Rouseff RL. 2008. Fresh squeezed orange juice odor: A review. Critical Reviews in Food Science and Nutrition 48:681−95 doi: 10.1080/10408390701638902 |
[29] |
Hinterholzer A, Schieberle P. 1998. Identification of the most odour-active volatiles in fresh, hand-extracted juice of Valencia late oranges by odour dilution techniques. Flavour and Fragrance Journal 13:49−55 doi: 10.1002/(SICI)1099-1026(199801/02)13:1%3C49::AID-FFJ691%3E3.0.CO;2-S |
[30] |
Zhu M, Lin J, Ye J, Wang R, Yang C, et al. 2018. A comprehensive proteomic analysis of elaioplasts from citrus fruits reveals insights into elaioplast biogenesis and function. Horticulture Research 5:6 doi: 10.1038/s41438-017-0014-x |
[31] |
Hiromi K, Kuwamoto C, Ohnishi M. 1980. A rapid sensitive method for the determination of ascorbic acid in the excess of 2,6-dichlorophenolindophenol using a stopped-flow apparatus. Analytical Biochemistry 101:421−26 doi: 10.1016/0003-2697(80)90208-0 |
[32] |
Lee HS, Castle WS. 2001. Seasonal changes of carotenoid pigments and color in Hamlin, Earlygold, and Budd blood orange juices. Journal of Agricultural and Food Chemistry 49:877−82 doi: 10.1021/jf000654r |
[33] |
Singleton VL, Orthofer R, Lamuela-Raventós RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology, ed. Packer L. Vol 299. UK: Academic Press. pp. 152−78. https://doi.org/10.1016/S0076-6879(99)99017-1 |
[34] |
Shin Y, Liu R, Nock JF, Holliday D, Watkins CB. 2007. Temperature and relative humidity effects on quality, total ascorbic acid, phenolics and flavonoid concentrations, and antioxidant activity of strawberry. Postharvest Biology and Technology 45:349−57 doi: 10.1016/j.postharvbio.2007.03.007 |
[35] |
Sdiri S, Navarro P, Monterde A, Benabda J, Salvador A. 2012. Effect of postharvest degreening followed by a cold-quarantine treatment on vitamin C, phenolic compounds and antioxidant activity of early-season citrus fruit. Postharvest Biology and Technology 65:13−21 doi: 10.1016/j.postharvbio.2011.10.010 |
[36] |
Yu Y, Bai J, Chen C, Plotto A, Baldwin EA, Gmitter FG. 2018. Comparative analysis of juice volatiles in selected mandarins, mandarin relatives and other citrus genotypes. Journal of the Science of Food and Agriculture 98:1124−31 doi: 10.1002/jsfa.8563 |
[37] |
Adams RP. 2007. Identification of essential oil components by gas chromatography/mass spectrometry. Carol Stream, Illinois, USA: Allured Publishing Corporation. 804 pp. |
[38] |
Linstrom PJ, Mallard WG. 2022. NIST Chemistry WebBook, NIST Standard Reference Database Number 69. Gaithersburg MD, 20899. National Institute of Standards and Technology. https://doi.org/10.18434/T4D303 |
[39] |
Rao X, Huang X, Zhou Z, Lin X. 2013. An improvement of the 2−ΔΔCᴛ method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinforma Biomath 3:71−85 |
[40] |
Jayasena V, Cameron I. 2008. Brix/acid ratio as a predictor of consumer acceptability of Crimson Seedless table grapes. Journal of Food Quality 31:736−50 doi: 10.1111/j.1745-4557.2008.00231.x |
[41] |
Wei X, Song M, Chen C, Tong H, Liang G, et al. 2018. Juice volatile composition differences between Valencia orange and its mutant Rohde Red Valencia are associated with carotenoid profile differences. Food Chemistry 245:223−32 doi: 10.1016/j.foodchem.2017.10.066 |
[42] |
Cano A, Medina A, Bermejo A. 2008. Bioactive compounds in different citrus varieties. Discrimination among cultivars. Journal of Food Composition and Analysis 21:377−81 doi: 10.1016/j.jfca.2008.03.005 |
[43] |
Goldenberg L, Yaniv Y, Kaplunov T, Doron-Faigenboim A, Porat R, Carmi N. 2014. Genetic diversity among mandarins in fruit-quality traits. Journal of Agricultural and Food Chemistry 62:4938−46 doi: 10.1021/jf5002414 |
[44] |
Feng S, Suh JH, Gmitter FG, Wang Y. 2018. Differentiation between flavors of sweet orange (Citrus sinensis) and mandarin (Citrus reticulata). Journal of Agricultural and Food Chemistry 66:203−11 doi: 10.1021/acs.jafc.7b04968 |
[45] |
Li W, Liu C, He M, Li J, Cai Y, et al. 2017. Largely different contents of terpenoids in beef red-flesh tangerine and its wild type. BMC Plant Biology 17:36 doi: 10.1186/s12870-017-0988-4 |
[46] |
Cheong MW, Liu S, Zhou W, Curran P, Yu B. 2012. Chemical composition and sensory profile of pomelo (Citrus grandis (L.) Osbeck) juice. Food Chemistry 135:2505−13 doi: 10.1016/j.foodchem.2012.07.012 |
[47] |
Yu Y, Bai J, Chen C, Plotto A, Yu Q, et al. 2017. Identification of QTLs controlling aroma volatiles using a 'Fortune' × 'Murcott' (Citrus reticulata) population. BMC Genomics 18:646 doi: 10.1186/s12864-017-4043-5 |
[48] |
Feng S, Gmitter FG Jr, Grosser JW, Wang Y. 2021. Identification of key flavor compounds in citrus fruits: A flavoromics approach. ACS Food Science & Technology 1:2076−85 doi: 10.1021/acsfoodscitech.1c00304 |
[49] |
Zhong Y, Pan X, Wang R, Xu J, Guo J, et al. 2020. ZmCCD10a encodes a distinct type of carotenoid cleavage dioxygenase and enhances plant tolerance to low phosphate. Plant Physiology 184:374−92 doi: 10.1104/pp.20.00378 |
[50] |
Xiao L, Ye F, Zhou Y, Zhao G. 2021. Utilization of pomelo peels to manufacture value-added products: A review. Food Chemistry 351:129247 doi: 10.1016/j.foodchem.2021.129247 |
[51] |
Liu N, Li X, Zhao P, Zhang X, Qiao O, et al. 2021. A review of chemical constituents and health-promoting effects of citrus peels. Food Chemistry 365:130585 doi: 10.1016/j.foodchem.2021.130585 |
[52] |
Sawamura M, Kuriyama T. 1988. Quantitative determination of volatile constituents in the pummelo (Citrus grandis Osbeck forma Tosa-buntan). Journal of Agricultural and Food chemistry 36:567−569 doi: 10.1021/jf00081a040 |
[53] |
Liu C, Cheng Y, Zhang H, Deng X, Chen F, et al. 2012. Volatile constituents of wild citrus Mangshanyegan (Citrus nobilis Lauriro) peel oil. Journal of Agricultural and Food Chemistry 60:2617−2628 doi: 10.1021/jf2039197 |
[54] |
Yang C, Chen H, Chen H, Zhong B, Luo X, Chun J. 2017. Antioxidant and anticancer activities of essential oil from Gannan navel orange peel. Molecules 22:1391 doi: 10.3390/molecules22081391 |
[55] |
Cristóbal-Luna JM, Álvarez-González I, Madrigal-Bujaidar E, Chamorro-Cevallos G. 2018. Grapefruit and its biomedical, antigenotoxic and chemopreventive properties. Food and Chemical Toxicology 112:224−34 doi: 10.1016/j.fct.2017.12.038 |
[56] |
Elmaci Y, Altug T. 2005. Flavor characterization of three mandarin cultivars (Satsuma, Bodrum, Clemantine) by using GC/MS and flavor profile analysis techniques. Journal of Food Quality 28:163−70 doi: 10.1111/j.1745-4557.2005.00009.x |
[57] |
Lota M-L, de Rocca Serra D, Tomi F, Casanova J. 2000. Chemical variability of peel and leaf essential oils of mandarins from Citrus reticulata Blanco. Biochemical Systematics and Ecology 28:61−78 doi: 10.1016/S0305-1978(99)00036-8 |
[58] |
Jing L, Lei Z, Li L, Xie R, Xi W, et al. 2014. Antifungal activity of citrus essential oils. Journal of Agricultural and Food Chemistry 62:3011−33 doi: 10.1021/jf5006148 |
[59] |
Bülow N, König WA. 2000. The role of germacrene D as a precursor in sesquiterpene biosynthesis: investigations of acid catalyzed, photochemically and thermally induced rearrangements. Phytochemistry 55:141−68 doi: 10.1016/S0031-9422(00)00266-1 |
[60] |
Multari S, Carlin S, Sicari V, Martens S. 2020. Differences in the composition of phenolic compounds, carotenoids, and volatiles between juice and pomace of four citrus fruits from Southern Italy. European Food Research and Technology 246:1991−2005 doi: 10.1007/s00217-020-03550-8 |
[61] |
Joglekar SN, Pathak PD, Mandavgane SA, Kulkarni BD. 2019. Process of fruit peel waste biorefinery: a case study of citrus waste biorefinery, its environmental impacts and recommendations. Environmental Science and Pollution Research International 26:34713−22 doi: 10.1007/s11356-019-04196-0 |
[62] |
Multari S, Licciardello C, Caruso M, Anesi A, Martens S. 2021. Flavedo and albedo of five citrus fruits from Southern Italy: physicochemical characteristics and enzyme-assisted extraction of phenolic compounds. Journal of Food Measurement and Characterization 15:1754−62 doi: 10.1007/s11694-020-00787-5 |
[63] |
Teixeira F, Santos BAD, Nunes G, Soares JM, Amaral LAD, et al. 2020. Addition of orange peel in orange jam: Evaluation of sensory, physicochemical, and nutritional characteristics. Molecules 25:1670 doi: 10.3390/molecules25071670 |
[64] |
Russo C, Maugeri A, Lombardo GE, Musumeci L, Barreca D, et al. 2021. The second life of citrus fruit waste: A valuable source of bioactive compounds. Molecules 26:5991 doi: 10.3390/molecules26195991 |
[65] |
Pérez-López AJ, Carbonell-Barrachina ÁA. 2006. Volatile odour components and sensory quality of fresh and processed mandarin juices. Journal of the Science of Food and Agriculture 86:2404−2411 doi: 10.1002/jsfa.2631 |
[66] |
Li L, Tan W, Li W, Zhu Y, Cheng Y, et al. 2019. Citrus taste modification potentials by genetic engineering. International Journal of Molecular Sciences 20:6194 doi: 10.3390/ijms20246194 |
[67] |
Elston A, Lin J, Rouseff R. 2005. Determination of the role of valencene in orange oil as a direct contributor to aroma quality. Flavour and Fragrance Journal 20:381−86 doi: 10.1002/ffj.1578 |
[68] |
Wu J, Wang Z, Shi Z, Zhang S, Ming R, et al. 2013. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Research 23:396−408 doi: 10.1101/gr.144311.112 |