[1]

Grafi G, Avivi Y. 2004. Stem cells: A lesson from dedifferentiation. Trends in Biotechnology 22:388−89

doi: 10.1016/j.tibtech.2004.06.001
[2]

Grafi G, Florentin A, Ransbotyn V, Morgenstern Y. 2011. The stem cell state in plant development and in response to stress. Frontiers in Plant Science 2:53

doi: 10.3389/fpls.2011.00053
[3]

Li J, Gao C, Miao Y, Liu Z, Cui, K. 2021. Development of a highly efficient callus induction and plant regeneration system for Dendrocalamus sinicus using hypocotyls as explants. Plant Cell, Tissue and Organ Culture 145:117−25

doi: 10.1007/s11240-020-01996-y
[4]

Adil M, Ren X, Kang DI, Thi LT, Jeong BR. 2018. Effect of explant type and plant growth regulators on callus induction, growth and secondary metabolites production in Cnidium officinale Makino. Molecular Biology Reports 45:1919−27

doi: 10.1007/s11033-018-4340-3
[5]

Hemmati N, Cheniany M, Ganjeali A. 2020. Effect of plant growth regulators and explants on callus induction and study of antioxidant potentials and phenolic metabolites in Salvia tebesana Bunge. Botanica Serbica 44:163−73

doi: 10.2298/BOTSERB2002163H
[6]

McClintock B. 1984. The significance of responses of the genome to challenge. Science 226:792−801

doi: 10.1126/science.15739260
[7]

Lang Z, Wang Y, Tang K, Tang D, Datsenka T, et al. 2017. Critical roles of DNA demethylation in the activation of ripening-induced genes and inhibition of ripening-repressed genes in tomato fruit. PNAS 114:E4511−E4519

doi: 10.1073/pnas.1705233114
[8]

Liang Z, Riaz A, Chachar S, Ding Y, Du H, et al. 2020. Epigenetic modifications of mRNA and DNA in plants. Molecular Plant 13:14−30

doi: 10.1016/j.molp.2019.12.007
[9]

Zhang H, Lang Z, Zhu J. 2018. Dynamics and function of DNA methylation in plants. Nature Reviews Molecular Cell Biology 19:489−506

doi: 10.1038/s41580-018-0016-z
[10]

Ding ML. 2008. Studies on DNA methylation during dedifferentiation of mature wheat embryos. Thesis. Henan Agricultural University, Henan Province. pp. 1−55 (In Chinese). https://doi.org/10.7666/d.y1336284

[11]

Gao Y, Ran L, Kong Y, Jiang J, Sokolov V, et al. 2014. Assessment of DNA methylation changes in tissue culture of Brassica napus. Russian Journal of Genetics 50:1186−91

doi: 10.1134/S1022795414100032
[12]

Karim R, Tan YS, Singh P, Nuruzzaman M, Khalid N, et al. 2019. Expression and DNA methylation of MET1, CMT3 and DRM2 during in vitro culture of Boesenbergia rotunda (L.) Mansf. Philippine Agricultural Scientist 101:261−70

[13]

Jiang F, Xu X, Liu H, Zhu J. 2015. DRM1 and DRM2 are involved in Arabidopsis callus formation. Plant Cell, Tissue and Organ Culture 123:221−28

doi: 10.1007/s11240-015-0812-5
[14]

Binte Mostafiz S, Wagiran A. 2018. Efficient callus induction and regeneration in selected Indica rice. Agronomy 8:77−87

doi: 10.3390/agronomy8050077
[15]

Chen YM, Huang J, Hou T, Pan I. 2019. Effects of light intensity and plant growth regulators on callus proliferation and shoot regeneration in the ornamental succulent Haworthia. Botanical Studies 60:10

doi: 10.1186/s40529-019-0257-y
[16]

El-Shafey N, Sayed M, Ahmed E, Hammouda O, Khodary SE. 2019. Effect of growth regulators on micropropagation, callus induction and callus flavonoid content of Rumex pictus Forssk. Egyptian Journal of Botany 59:269−78

[17]

Sharma G, Nautiyal AR. 2009. Influence of explants type and plant growth regulators on in vitro multiple shoots regeneration of a laurel from Himalaya. Nature and Science 7:1−7

doi: 10.7537/marsnsj070909.01
[18]

Lu H, Xu P, Hu K, Xiao Q, Wen J, et al. 2020. Transcriptome profiling reveals cytokinin promoted callus regeneration in Brassica juncea. Plant Cell, Tissue and Organ Culture 141:191−206

doi: 10.1007/s11240-020-01779-5
[19]

Xu C, Cao H, Zhang Q, Wang H, Xin W, et al. 2018. Control of auxin-induced callus formation by bzip59–lbd complex in Arabidopsis regeneration. Nature Plants 4:108−15

doi: 10.1038/s41477-017-0095-4
[20]

Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, et al. 2001. Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409:1060−63

doi: 10.1038/35059117
[21]

Suzuki T, Miwa K, Ishikawa K, Yamada H, Aiba H, et al. 2001. The Arabidopsis sensor His-kinase, AHK4, can respond to cytokinins. Plant and Cell Physiology 42:107−13

doi: 10.1093/pcp/pce037
[22]

Ueguchi C, Sato S, Kato T, Tabata S. 2001. The AHK4 gene involved in the cytokinin-signaling pathway as a direct receptor molecule in Arabidopsis thaliana. Plant and Cell Physiology 42:751−55

doi: 10.1093/pcp/pce094
[23]

Yamada H, Suzuki T, Terada K, Takei K, Ishikawa K, et al. 2001. The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant and Cell Physiology 42:1017−23

doi: 10.1093/pcp/pce127
[24]

To JPC, Haberer G, Ferreira FJ, Deruère J, Mason MG, et al. 2004. Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. The Plant Cell 16:658−71

doi: 10.1105/tpc.018978
[25]

Köllmer I, Novák O, Strnad M, Schmülling T, Werner T. 2014. Overexpression of the cytosolic cytokinin oxidase/dehydrogenase (CKX7) from Arabidopsis causes specific changes in root growth and xylem differentiation. The Plant Journal 78:359−71

doi: 10.1111/tpj.12477
[26]

Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, et al. 2005. Characterization of an arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. The Plant Cell 17:616−27

doi: 10.1105/tpc.104.026690
[27]

Barbez E, Kubeš M, Rolčík J, Béziat C, Pěnčík A, et al. 2012. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature 485:119−22

doi: 10.1038/nature11001
[28]

Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15:473−97

doi: 10.1111/j.1399-3054.1962.tb08052.x
[29]

Portis E, Acquadro A, Comino C, Lanteri S. 2004. Analysis of DNA methylation during germination of peper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Science 166:169−78

doi: 10.1016/j.plantsci.2003.09.004
[30]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $ {2}^{-\mathrm{\Delta }\mathrm{\Delta }{C}_{\mathrm{T}}} $ method. Methods 25:402−8

doi: 10.1006/meth.2001.1262
[31]

Firn RD, Sharma N, Digby J. 1994. Physiology, growth and development of plants and cells in culture—the way ahead. In Physiology, Growth and Development of Plants in Culture, eds. Lumsden PJ, Nicholas JR, Davies WJ. Dordrecht: Springer. pp 409−21. https://doi.org/10.1007/978-94-011-0790-7_46

[32]

Deng Y, Johnson DR, Guan X, Ang CY, Ai J, et al. 2010. In vitro gene regulatory networks predict in vivo function of liver. BMC Systems Biology 4:153

doi: 10.1186/1752-0509-4-153
[33]

Kumar N, Reddy M. 2011. In vitro plant propagation: a review. Journal of Forest and Environmental Science 27:61−72

doi: 10.7747/JFS.2011.27.2.1
[34]

Loyola-Vargas VM, Ochoa-Alejo N. 2018. An Introduction to Plant Tissue Culture: Advances and Perspectives. In Plant Cell Culture Protocols. Methods in Molecular Biology, eds. Loyola-Vargas V, Ochoa-Alejo N. vol 1815. New York: Humana Press. pp. 3−13. https://doi.org/10.1007/978-1-4939-8594-4_11

[35]

De-la-Peña C, Nic-Can G, Ojeda G, Herrera-Herrera J, López-Torres A, et al. 2012. KNOX1 is expressed and epigenetically regulated during in vitro conditions in Agave spp. BMC Plant Biology 12:203

doi: 10.1186/1471-2229-12-203
[36]

Grafi G, Ben-Meir H, Avivi Y, Moshe M, Dahan Y, et al. 2007. Histone methylation controls telomerase-independent telomere lengthening in cells undergoing dedifferentiation. Developmental Biology 306:838−46

doi: 10.1016/j.ydbio.2007.03.023
[37]

Han Z, Crisp PA, Stelpflug S, Kaeppler SM, Li Q, et al. 2018. Heritable epigenomic changes to the maize methylome resulting from tissue culture. Genetics 209:983−95

doi: 10.1534/genetics.118.300987
[38]

Kabita K, Sharma S, Sanatombi K. 2019. Analysis of capsaicinoid biosynthesis pathway genes expression in callus cultures of Capsicum chinense Jacq cv. 'Umorok'. Plant Cell, Tissue and Organ Culture 137:565−73

doi: 10.1007/s11240-019-01591-w
[39]

Li H, Zhao X, Dai H, Wu W, Mao W, et al. 2012. Tissue culture responsive microRNAs in strawberry. Plant Molecular Biology Reporter 30:1047−54

doi: 10.1007/s11105-011-0406-2
[40]

Yang X, Wang L, Yuan D, Lindsey K, Zhang X. 2013. Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis. Journal of Experimental Botany 64:1521−36

doi: 10.1093/jxb/ert013
[41]

Chen M, Lv S, Meng Y. 2010. Epigenetic performers in plants. Development, Growth & Differentiation 52:555−66

doi: 10.1111/j.1440-169X.2010.01192.x
[42]

Ahmad N, Khan M, Shah S, Zia M, Hussain I, et al. 2020. An efficient and reproducible tissue culture procedure for callus induction and multiple shoots regeneration in groundnut (Arachis hypogaea L.). The Journal of Animal and Plant Sciences 30:1540−47

doi: 10.36899/JAPS.2020.6.0175
[43]

Ram M, Prasad K, Janakiram T, Singh S, Arora A. 2015. Callus induction and proliferation from Rosa hybrida leaf explants. Indian Journal of Horticulture 72:444−46

doi: 10.5958/0974-0112.2015.00089.4
[44]

Yusna A, Harahap F, Edi S. 2018. Effect of plant growth regulators on in vitro callus induction of shoot explant mangosteen (Garcinia mangostana L.). International Journal of Advanced Research 6:123−29

doi: 10.21474/IJAR01/7978
[45]

Liu P, Qiao G, Wen X. 2016. DNA methylation variation of in vitro pitaya shoots and its response to exogenous GA application. Journal of Huazhong Agricultural University 35:18−26

doi: 10.13300/j.cnki.hnlkxb.2016.05.003
[46]

Ran L, Li M, Fan H, Jiang J, Wang Y, et al. 2016. Epigenetic variation in the callus of Brassica napus under different inducement conditions. Russian Journal of Genetics 52:802−9

doi: 10.1134/S1022795416080111
[47]

Temel A, Gozukirmizi N. 2012. Effects of homobrassinolide in barley callus culture. Plant, Soil and Environment 58:441−45

doi: 10.17221/305/2012-PSE
[48]

Berdasco M, Alcázar R, García-Ortiz MV, Ballestar E, Fernández AF, et al. 2008. Promoter DNA Hypermethylation and Gene Repression in Undifferentiated Arabidopsis Cells. PLoS One 3:e3306

doi: 10.1371/journal.pone.0003306
[49]

Chen X, Xu X, Shen X, Li H, Zhu C, et al. 2020. Genome-wide investigation of DNA methylation dynamics reveals a critical role of DNA demethylation during the early somatic embryogenesis of Dimocarpus longan Lour. Tree Physiology 40:1807−26

doi: 10.1093/treephys/tpaa097
[50]

Rout GR, Palai SK, Samantaray S, Patra, A, Das P. 1998. Chromosome variation and cytophotometric investigation of callus culture of the teaplant, Camellia sinensis. Cytobios 93:73−82

doi: 10.1007/s11610-007-0055-1
[51]

Shan X, Li D, Qu R. 2000. Thidiazuron promotes in vitro regeneration of wheat and barley. In Vitro Cellular & Developmental Biology - Plant 36:207−10

doi: 10.1007/s11627-000-0038-y