[1]

Brown JR. 2003. Ancient horizontal gene transfer. Nature Reviews Genetics 4:121−32

doi: 10.1038/nrg1000
[2]

Ochman H, Lawrence JG, Groisman EA. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405:299−304

doi: 10.1038/35012500
[3]

Polz MF, Alm EJ, Hanage WP. 2013. Horizontal gene transfer and the evolution of bacterial and archaeal population structure. Trends in Genetics 29:170−75

doi: 10.1016/j.tig.2012.12.006
[4]

Dunning Hotopp JC. 2011. Horizontal gene transfer between bacteria and animals. Trends in Genetics 27:157−63

doi: 10.1016/j.tig.2011.01.005
[5]

Thomas CM, Nielsen KM. 2005. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nature Reviews Microbiology 3:711−21

doi: 10.1038/nrmicro1234
[6]

Doolittle WF. 1998. You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends in Genetics 14:307−11

doi: 10.1016/S0168-9525(98)01494-2
[7]

Dunning Hotopp JC, Clark ME, Oliveira DCSG, Foster JM, Fischer P, et al. 2007. Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317:1753−56

doi: 10.1126/science.1142490
[8]

Keeling PJ, Palmer JD. 2008. Horizontal gene transfer in eukaryotic evolution. Nature Reviews Genetics 9:605−18

doi: 10.1038/nrg2386
[9]

Bushman F. 2002. Lateral DNA transfer. UK: Cold Spring Harbor Laboratory Press

[10]

Li Y, Liu Z, Liu C, Shi Z, Pang L, et al. 2022. HGT is widespread in insects and contributes to male courtship in lepidopterans. Cell 185:2975−2987.E10

doi: 10.1016/j.cell.2022.06.014
[11]

Xia J, Guo Z, Yang Z, Han H, Wang S, et al. 2021. Whitefly hijacks a plant detoxification gene that neutralizes plant toxins. Cell 184:1693−1705.E17

doi: 10.1016/j.cell.2021.02.014
[12]

Boto L. 2014. Horizontal gene transfer in the acquisition of novel traits by metazoans. Proceedings of the Royal Society B: Biological Sciences 281:20132450

doi: 10.1098/rspb.2013.2450
[13]

Acuña R, Padilla BE, Flórez-Ramos CP, Rubio JD, Herrera JC, et al. 2012. Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee. PNAS 109:4197−202

doi: 10.1073/pnas.1121190109
[14]

Husnik F, McCutcheon JP. 2018. Functional horizontal gene transfer from bacteria to eukaryotes. Nature Reviews Microbiology 16:67−79

doi: 10.1038/nrmicro.2017.137
[15]

Choi JY, Bubnell JE, Aquadro CF. 2015. Population genomics of infectious and integrated Wolbachia pipientis genomes in Drosophila ananassae. Genome Biology and Evolution 7:2362−82

doi: 10.1093/gbe/evv158
[16]

Wybouw N, Pauchet Y, Heckel DG, Van Leeuwen T. 2016. Horizontal gene transfer contributes to the evolution of arthropod herbivory. Genome Biology and Evolution 8:1785−801

doi: 10.1093/gbe/evw119
[17]

Efron B, Halloran E, Holmes S. 1996. Bootstrap confidence levels for phylogenetic trees. PNAS 93:13429

doi: 10.1073/pnas.93.23.13429
[18]

Roger AJ. 1999. Reconstructing early events in eukaryotic evolution. The American Naturalist 154:S146−S163

doi: 10.1086/303290
[19]

Andersson JO, Hirt RP, Foster PG, Roger AJ. 2006. Evolution of four gene families with patchy phylogenetic distributions: influx of genes into protist genomes. BMC Evolutionary Biology 6:27

doi: 10.1186/1471-2148-6-27
[20]

Salzberg SL, White O, Peterson J, Eisen JA. 2001. Microbial genes in the human genome: lateral transfer or gene loss? Science 292:1903−6

doi: 10.1126/science.1061036
[21]

Ku C, Nelson-Sathi S, Roettger M, Garg S, Hazkani-Covo E, et al. 2015. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes. PNAS 112:10139−46

doi: 10.1073/pnas.1421385112
[22]

Peccoud J, Loiseau V, Cordaux R, Gilbert C. 2017. Massive horizontal transfer of transposable elements in insects. PNAS 114:4721−26

doi: 10.1073/pnas.1621178114
[23]

Lawrence JG, Ochman H. 1998. Molecular archaeology of the Escherichia coli genome. PNAS 95:9413−17

doi: 10.1073/pnas.95.16.9413
[24]

Garcia-Vallvé S, Romeu A, Palau J. 2000. Horizontal gene transfer in bacterial and archaeal complete genomes. Genome Research 10:1719−25

doi: 10.1101/gr.130000
[25]

Kondo N, Nikoh N, Ijichi N, Shimada M, Fukatsu T. 2002. Genome fragment of Wolbachia endosymbiont transferred to X chromosome of host insect. PNAS 99:14280−5

doi: 10.1073/pnas.222228199
[26]

Brelsfoard C, Tsiamis G, Falchetto M, Gomulski LM, Telleria E, et al. 2014. Presence of extensive Wolbachia symbiont insertions discovered in the genome of its host Glossina morsitans morsitans. PLoS Neglected Tropical Diseases 8:e2728

doi: 10.1371/journal.pntd.0002728
[27]

Klasson L, Kumar N, Bromley R, Sieber K, Flowers M, et al. 2014. Extensive duplication of the Wolbachia DNA in chromosome four of Drosophila ananassae. BMC Genomics 15:1097

doi: 10.1186/1471-2164-15-1097
[28]

Funkhouser-Jones LJ, Sehnert SR, Martínez-Rodríguez P, Toribio-Fernández R, Pita M, et al. 2015. Wolbachia co-infection in a hybrid zone: discovery of horizontal gene transfers from two Wolbachia supergroups into an animal genome. PeerJ 3:e1479

doi: 10.7717/peerj.1479
[29]

Lawrence JG, Ochman H. 1997. Amelioration of bacterial genomes: rates of change and exchange. Journal of molecular evolution 44:383−97

doi: 10.1007/PL00006158
[30]

Lawrence JG, Ochman H. 2002. Reconciling the many faces of lateral gene transfer. Trends in Microbiology 10:1−4

doi: 10.1016/s0966-842x(01)02282-x
[31]

Ragan MA. 2001. On surrogate methods for detecting lateral gene transfer. FEMS Microbiology Letters 201:187−91

doi: 10.1111/j.1574-6968.2001.tb10755.x
[32]

Moran NA, Jarvik T. 2010. Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 328:624−7

doi: 10.1126/science.1187113
[33]

Stouthamer R, Breeuwer JA, Hurst GD. 1999. Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annual Review of Microbiology 53:71−102

doi: 10.1146/annurev.micro.53.1.71
[34]

Werren JH, Baldo L, Clark ME. 2008. Wolbachia: master manipulators of invertebrate biology. Nature Reviews Microbiology 6:741−51

doi: 10.1038/nrmicro1969
[35]

Werren JH. 1997. Biology of wolbachia. Annual Review of Entomology 42:587−609

doi: 10.1146/annurev.ento.42.1.587
[36]

Nikoh N, Tanaka K, Shibata F, Kondo N, Hizume M, et al. 2008. Wolbachia genome integrated in an insect chromosome: evolution and fate of laterally transferred endosymbiont genes. Genome Research 18:272−80

doi: 10.1101/gr.7144908
[37]

Aikawa T, Anbutsu H, Nikoh N, Kikuchi T, Shibata F, et al. 2009. Longicorn beetle that vectors pinewood nematode carries many Wolbachia genes on an autosome. Proceedings Biological Sciences 276:3791−98

doi: 10.1098/rspb.2009.1022
[38]

Werren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, et al. 2010. Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science 327:343−48

doi: 10.1126/science.1178028
[39]

Pers D, Lynch JA. 2018. Ankyrin domain encoding genes from an ancient horizontal transfer are functionally integrated into Nasonia developmental gene regulatory networks. Genome Biology 19:148

doi: 10.1186/s13059-018-1526-x
[40]

Klasson L, Kambris Z, Cook PE, Walker T, Sinkins SP. 2009. Horizontal gene transfer between Wolbachia and the mosquito Aedes aegypti. BMC Genomics 10:33

doi: 10.1186/1471-2164-10-33
[41]

Doudoumis V, Tsiamis G, Wamwiri F, Brelsfoard C, Alam U, et al. 2012. Detection and characterization of Wolbachia infections in laboratory and natural populations of different species of tsetse flies (genus Glossina). BMC Microbiology 12:S3

doi: 10.1186/1471-2180-12-S1-S3
[42]

Douglas AE. 1989. Mycetocyte symbiosis in insects. Biological Reviews 64:409−34

doi: 10.1111/j.1469-185X.1989.tb00682.x
[43]

Moran NA, McCutcheon JP, Nakabachi A. 2008. Genomics and evolution of heritable bacterial symbionts. Annual Review of Genetics 42:165−90

doi: 10.1146/annurev.genet.41.110306.130119
[44]

Nakabachi A, Shigenobu S, Sakazume N, Shiraki T, Hayashizaki Y, et al. 2005. Transcriptome analysis of the aphid bacteriocyte, the symbiotic host cell that harbors an endocellular mutualistic bacterium, Buchnera. Proceedings of the National Academy of Sciences 102:5477−82

doi: 10.1073/pnas.0409034102
[45]

Nikoh N, Nakabachi A. 2009. Aphids acquired symbiotic genes via lateral gene transfer. BMC Biology 7:12

doi: 10.1186/1741-7007-7-12
[46]

Templin MF, Ursinus A, Höltje JV. 1999. A defect in cell wall recycling triggers autolysis during the stationary growth phase of Escherichia coli. The EMBO journal 18:4108−17

doi: 10.1093/emboj/18.15.4108
[47]

Jorgenson MA, Chen Y, Yahashiri A, Popham DL, Weiss DS. 2014. The bacterial septal ring protein RlpA is a lytic transglycosylase that contributes to rod shape and daughter cell separation in Pseudomonas aeruginosa. Molecular Microbiology 93:113−28

doi: 10.1111/mmi.12643
[48]

Consortium IAG. 2010. Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biology 8:e1000313

doi: 10.1371/journal.pbio.1000313
[49]

Nikoh N, McCutcheon JP, Kudo T, Miyagishima SY, Moran NA, et al. 2010. Bacterial genes in the aphid genome: absence of functional gene transfer from Buchnera to its host. PLoS Genetics 6:e1000827

doi: 10.1371/journal.pgen.1000827
[50]

Nakabachi A, Ishida K, Hongoh Y, Ohkuma M, Miyagishima SY. 2014. Aphid gene of bacterial origin encodes a protein transported to an obligate endosymbiont. Current Biology 24:R640−R641

doi: 10.1016/j.cub.2014.06.038
[51]

Nakabachi A, Ueoka R, Oshima K, Teta R, Mangoni A, et al. 2013. Defensive bacteriome symbiont with a drastically reduced genome. Current Biology 23:1478−84

doi: 10.1016/j.cub.2013.06.027
[52]

Sloan DB, Nakabachi A, Richards S, Qu J, Murali SC, et al. 2014. Parallel histories of horizontal gene transfer facilitated extreme reduction of endosymbiont genomes in sap-feeding insects. Molecular Biology and Evolution 31:857−71

doi: 10.1093/molbev/msu004
[53]

Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, et al. 2006. The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314:267

doi: 10.1126/science.1134196
[54]

Husnik F, Nikoh N, Koga R, Ross L, Duncan RP, et al. 2013. Horizontal Gene Transfer from Diverse Bacteria to an Insect Genome Enables a Tripartite Nested Mealybug Symbiosis. Cell 153:1567−78

doi: 10.1016/j.cell.2013.05.040
[55]

Daimon T, Hamada K, Mita K, Okano K, Suzuki MG, et al. 2003. A Bombyx mori gene, BmChi-h, encodes a protein homologous to bacterial and baculovirus chitinases. Insect biochemistry and molecular biology 33:749−59

doi: 10.1016/S0965-1748(03)00084-5
[56]

Daimon T, Taguchi T, Meng Y, Katsuma S, Mita K, et al. 2008. Beta-fructofuranosidase genes of the silkworm, Bombyx mori: insights into enzymatic adaptation of B. mori to toxic alkaloids in mulberry latex. The Journal of Biological Chemistry 283:15271−79

doi: 10.1074/jbc.M709350200
[57]

Zhu B, Lou MM, Xie GL, Zhang GQ, Zhou XP, et al. 2011. Horizontal gene transfer in silkworm, Bombyx mori. BMC Genomics 12:248

doi: 10.1186/1471-2164-12-248
[58]

Li ZW, Shen YH, Xiang ZH, Zhang Z. 2011. Pathogen-origin horizontally transferred genes contribute to the evolution of Lepidopteran insects. BMC Evolutionary Biology 11:356

doi: 10.1186/1471-2148-11-356
[59]

Wheeler D, Redding AJ, Werren JH. 2013. Characterization of an ancient lepidopteran lateral gene transfer. PLoS ONE 8:e59262

doi: 10.1371/journal.pone.0059262
[60]

Sun BF, Xiao JH, He SM, Liu L, Murphy RW, et al. 2013. Multiple ancient horizontal gene transfers and duplications in lepidopteran species. Insect Molecular Biology 22:72−87

doi: 10.1111/imb.12004
[61]

Dai X, Kiuchi T, Zhou Y, Jia S, Xu Y, et al. 2021. Horizontal gene transfer and gene duplication of β-fructofuranosidase confer lepidopteran insects metabolic benefits. Molecular Biology and Evolution 38:2897−914

doi: 10.1093/molbev/msab080
[62]

Pauchet Y, Heckel DG. 2013. The genome of the mustard leaf beetle encodes two active xylanases originally acquired from bacteria through horizontal gene transfer. Proceedings of the Royal Society B: Biological Sciences 280:20131021

doi: 10.1098/rspb.2013.1021
[63]

Pedezzi R, Fonseca FPP, Santos Junior CD, Kishi LT, Terra WR, Henrique-Silva F. 2014. A novel β-fructofuranosidase in Coleoptera: Characterization of a β-fructofuranosidase from the sugarcane weevil, Sphenophorus levis. Insect Biochemistry and Molecular Biology 55:31−38

doi: 10.1016/j.ibmb.2014.10.005
[64]

Zhao C, Doucet D, Mittapalli O. 2014. Characterization of horizontally transferred β-fructofuranosidase (ScrB) genes in Agrilus planipennis. Insect Molecular Biology 23:821−32

doi: 10.1111/imb.12127
[65]

Eyun SI, Wang H, Pauchet Y, Ffrench-Constant RH, Benson AK, et al. 2014. Molecular evolution of glycoside hydrolase genes in the western corn rootworm (Diabrotica virgifera virgifera). PLoS ONE 9:e94052

doi: 10.1371/journal.pone.0094052
[66]

Shelomi M, Jasper WC, Atallah J, Kimsey LS, Johnson BR. 2014. Differential expression of endogenous plant cell wall degrading enzyme genes in the stick insect (Phasmatodea) midgut. BMC Genomics 15:1−18

doi: 10.1186/1471-2164-15-917
[67]

Shelomi M, Danchin EGJ, Heckel D, Wipfler B, Bradler S, et al. 2016. Horizontal gene transfer of pectinases from bacteria preceded the diversification of stick and leaf insects. Scientific Reports 6:26388

doi: 10.1038/srep26388
[68]

Lapadula WJ, Marcet PL, Mascotti ML, Sanchez-Puerta MV, Juri Ayub M. 2017. Metazoan ribosome inactivating protein encoding genes acquired by horizontal gene transfer. Scientific Reports 7:1863

doi: 10.1038/s41598-017-01859-1
[69]

Lapadula WJ, Marcet PL, Taracena ML, Lenhart A, Juri Ayub M. 2020. Characterization of horizontally acquired ribotoxin encoding genes and their transcripts in Aedes aegypti. Gene 754:144857

doi: 10.1016/j.gene.2020.144857
[70]

Nováková E, Moran NA. 2012. Diversification of genes for carotenoid biosynthesis in aphids following an ancient transfer from a fungus. Molecular Biology and Evolution 29:313−23

doi: 10.1093/molbev/msr206
[71]

Cobbs C, Heath J, Stireman JO, 3rd, Abbot P. 2013. Carotenoids in unexpected places: gall midges, lateral gene transfer, and carotenoid biosynthesis in animals. Molecular Phylogenetics and Evolution 68:221−28

doi: 10.1016/j.ympev.2013.03.012
[72]

Kirsch R, Gramzow L, Theißen G, Siegfried BD, Ffrench-Constant RH, et al. 2014. Horizontal gene transfer and functional diversification of plant cell wall degrading polygalacturonases: Key events in the evolution of herbivory in beetles. Insect Biochemistry and Molecular Biology 52:33−50

doi: 10.1016/j.ibmb.2014.06.008
[73]

Martinson EO, Martinson VG, Edwards R, Mrinalini, Werren JH. 2016. Laterally Transferred Gene Recruited as a Venom in Parasitoid Wasps. Molecular Biology and Evolution 33:1042−52

doi: 10.1093/molbev/msv348
[74]

Whiteman NK, Tarnopol RL. 2021. Whiteflies weaponize a plant defense via horizontal gene transfer. Cell 184:1657−58

doi: 10.1016/j.cell.2021.03.017
[75]

Lapadula WJ, Mascotti ML, Juri Ayub M. 2020. Whitefly genomes contain ribotoxin coding genes acquired from plants. Scientific Reports 10:15503

doi: 10.1038/s41598-020-72267-1
[76]

Erb M, Reymond P. 2019. Molecular interactions between plants and insect herbivores. Annual Review of Plant Biology 70:527−57

doi: 10.1146/annurev-arplant-050718-095910
[77]

Prasad A, Chirom O, Prasad M. 2021. Insect herbivores benefit from horizontal gene transfer. Trends in Plant Science 26:1096−97

doi: 10.1016/j.tplants.2021.07.012
[78]

Di Lelio I, Illiano A, Astarita F, Gianfranceschi L, Horner D, et al. 2019. Evolution of an insect immune barrier through horizontal gene transfer mediated by a parasitic wasp. PLoS Genetics 15:e1007998

doi: 10.1371/journal.pgen.1007998
[79]

Gasmi L, Sieminska E, Okuno S, Ohta R, Coutu C, et al. 2021. Horizontally transmitted parasitoid killing factor shapes insect defense to parasitoids. Science 373:535−41

doi: 10.1126/science.abb6396
[80]

Heringer P, Kuhn GCS. 2022. Multiple horizontal transfers of a Helitron transposon associated with a parasitoid wasp. Mobile DNA 13:20

doi: 10.1186/s13100-022-00278-y
[81]

Ye X, Shi M, Huang J, Chen X. 2018. Parasitoid polydnaviruses and immune interaction with secondary hosts. Developmental and Comparative Immunology 83:124−29

doi: 10.1016/j.dci.2018.01.007
[82]

Verster KI, Wisecaver JH, Karageorgi M, Duncan RP, Gloss AD, et al. 2019. Horizontal transfer of bacterial cytolethal distending toxin B genes to insects. Molecular Biology and Evolution 36:2105−10

doi: 10.1093/molbev/msz146