[1] |
Adachi M, Takenaka Y, Gidamis AB, Mikami B, Utsumi S. 2001. Crystal structure of soybean proglycinin A1aB1b homotrimer. Journal of Molecular Biology 305(2):291−305 doi: 10.1006/jmbi.2000.4310 |
[2] |
Klemans RJ, Knol EF, Michelsen-Huisman A, Pasmans SG, de Kruijf-Broekman W, et al. 2013. Components in soy allergy diagnostics: Gly m 2S albumin has the best diagnostic value in adults. Allergy, 68(11):1396−402 doi: 10.1111/all.12259 |
[3] |
Maruyama N, Adachi M, Takahashi K, Yagasaki K, Kohno M, et al. 2001. Crystal structures of recombinant and native soybean β-conglycinin β homotrimers. European Journal of Biochemistry 268(12):3595−604 doi: 10.1046/j.1432-1327.2001.02268.x |
[4] |
Riascos JJ, Weissinger SM, Weissinger AK, Kulis M, Burks AW, et al. 2016. The seed biotinylated protein of soybean (Glycine max): A boiling-resistant new allergen (Gly m 7) with the capacity to induce IgE-mediated allergic responses. European Journal of Biochemistry 64(19):3890−900 doi: 10.1021/acs.jafc.5b05873 |
[5] |
Dréau D, Lallès JP, Philouze-Romé V, Toullec R, Salmon H. 1994. Local and systemic immune responses to soybean protein ingestion in early-weaned pigs. Journal of Animal Science 72(8):2090−98 doi: 10.2527/1994.7282090x |
[6] |
Helm RM, Cockrell G, Connaughton C, Sampson HA, Bannon GA, Beilinson V, Livingstone D, Nielsen NC, Burks AW. 2000. A soybean G2 glycinin allergen. International Archives of Allergy and Immunology 123(3):205−12 doi: 10.1159/000024445 |
[7] |
Holzhauser T, Wackermann O, Ballmer-Weber BK, Bindslev-Jensen C, Scibilia J, et al. 2009. Soybean (Glycine max) allergy in Europe: Gly m 5 (β-conglycinin) and Gly m 6 (glycinin) are potential diagnostic markers for severe allergic reactions to soy. The Journal of Allergy and Clinical Immunology 123(2):452−458.E4 doi: 10.1016/j.jaci.2008.09.034 |
[8] |
Krishnan HB, Kim WS, Jang S, Kerley MS. 2009. All three subunits of soybean β-Conglycinin are potential food allergens. Journal of Agricultural and Food Chemistry 57(3):938−43 doi: 10.1021/jf802451g |
[9] |
Sun H, Liu X, Wang YZ, Liu JX, Feng J. 2013. Soybean glycinin- and β-conglycinin-induced intestinal immune responses in a murine model of allergy. Food and Agricultural Immunology 24(3):357−69 doi: 10.1080/09540105.2012.704507 |
[10] |
Keerati-u-rai M, Corredig M. 2010. Heat-induced changes occurring in oil/water emulsions stabilized by soy Glycinin and β-conglycinin. Journal of Agricultural and Food Chemistry 58(16):9171−80 doi: 10.1021/jf101425j |
[11] |
Costa J, Amaral JS, Grazina L, Oliveira MBPP, Mafra I. 2017. Matrix-normalised real-time PCR approach to quantify soybean as a potential food allergen as affected by thermal processing. Food Chemistry 221:1843−50 doi: 10.1016/j.foodchem.2016.10.091 |
[12] |
Kerezsi AD, Jacquet N, Blecker C. 2022. Advances on physical treatments for soy allergens reduction-A review. Trends in Food Science & Technology 122:24−39 doi: 10.1016/j.jpgs.2022.02.007 |
[13] |
Li YP, Sukmanov VO, Ma H. 2021. The effect of high pressure on soy protein functional features: A review. Journal of Chemistry and Technologies 29(1):77−91 doi: 10.15421/082104 |
[14] |
Liu ZW, Zhou YX, Wang F, Tan YC, Cheng JH, et al. 2021. Oxidation induced by dielectric barrier discharge (DBD) plasma treatment reduces IgG/IgE binding capacity and improves the functionality of glycinin. Food Chemistry 363:130300 doi: 10.1016/j.foodchem.2021.130300 |
[15] |
Xi J, Li, YY. 2021. The effects of ultra-high-pressure treatments combined with heat treatments on the antigenicity and structure of soy glycinin. International Journal of Food Science & Technology 56(10):5211−19 doi: 10.1111/ijfs.15297 |
[16] |
Ravindran A, Ramaswamy HS. 2023. ELISA Based Immunoreactivity Reduction of Soy Allergens through Thermal Processing. Processes 11:93 doi: 10.3390/pr11010093 |
[17] |
Dong X, Wang J, Raghavan V. 2020. Effects of high-intensity ultrasound processing on the physiochemical and allergenic properties of shrimp. Innovative Food Science & Emerging Technologies 65:102441 doi: 10.1016/j.ifset.2020.102441 |
[18] |
Nooji JK. 2011. Reduction of wheat allergen potency by pulsed ultraviolet light, high hydrostatic pressure, and non-thermal plasma. Thesis. University of Florida, USA. |
[19] |
Tammineedi CVRK, Choudhary R, Perez-Alvarado GC, Watson DG. 2013. Determining the effect of UV-C, high intensity ultrasound and nonthermal atmospheric plasma treatments on reducing the allergenicity of α-casein and whey proteins. LWT - Food Science and Technology 54(1):35−41 doi: 10.1016/j.lwt.2013.05.020 |
[20] |
Wang J, Vanga SK, McCusker C, Raghavan V. 2019. A comprehensive review on kiwifruit allergy: pathogenesis, diagnosis, management, and potential modification of allergens through processing. Comprehensive Reviews in Food Science and Food Safety 18:500−13 doi: 10.1111/1541-4337.12426 |
[21] |
Lee H, Zhou B, Liang W, Feng H, Martin SE. 2009. Inactivation of Escherichia coli cells with sonication, manosonication, thermosonication, and manothermosonication: microbial responses and kinetics modeling. Journal of Food Engineering 93(3):354−64 doi: 10.1016/j.jfoodeng.2009.01.037 |
[22] |
Villamiel M, de Jong P. 2000. Inactivation of Pseudomonas fluorescens and Streptococcus thermophilus in Trypticase® Soy Broth and total bacteria in milk by continuous-flow ultrasonic treatment and conventional heating. Journal of Food Engineering 45(3):171−79 doi: 10.1016/S0260-8774(00)00059-5 |
[23] |
Ampofo J, Ngadi M, Ramaswamy HS. 2020. The impact of temperature treatments on elicitation of the phenylpropanoid pathway, phenolic accumulations and antioxidative capacities of common bean (Phaseolus vulgaris) sprouts. Food and Bioprocess Technology 13(9):1544−55 doi: 10.1007/s11947-020-02496-9 |
[24] |
Ampofo JO, Ngadi MO, Ramaswamy HS. 2020. licitation kinetics of phenolics in common bean (Phaseolus vulgaris) sprouts by thermal treatments. Legume Science 2:e56 doi: 10.1002/leg3.56 |
[25] |
Uwaegbute AC, Iroegbu CU, Eke O. 2000. Chemical and sensory evaluation of germinated cowpeas (Vigna unguiculata) and their products. Food Chemistry 68(2):141−46 doi: 10.1016/S0308-8146(99)00134-X |
[26] |
Wu Y, Guan R, Liu Z, Li R, Chang R, et al. 2012. Synthesis and degradation of the major allergens in developing and germinating soybean seed. Journal of Integrative Plant Biology 54(1):4−14 doi: 10.1111/j.1744-7909.2011.01092.x |
[27] |
Troszyńska A, Szymkiewicz A, Wołejszo A. 2007. The effects of germination on the sensory quality and immunoreactive properties of pea (Pisum sativum L.) and soybean (Glycine max). Journal of Food Quality 30(6):1083−100 doi: 10.1111/j.1745-4557.2007.00179.x |
[28] |
Chen J, Wang J, Song P, Ma X. 2014. Determination of glycinin in soybean and soybean products using a sandwich enzyme-linked immunosorbent assay. Food Chemistry 162:27−33 doi: 10.1016/j.foodchem.2014.04.065 |
[29] |
Hei W, Li Z, Ma X, He P. 2012. Determination of beta-conglycinin in soybean and soybean products using a sandwich enzyme-linked immunosorbent assay. Analytica Chimica Acta 734:62−68 doi: 10.1016/j.aca.2012.05.009 |
[30] |
Bandekar J. 1992. Amide modes and protein conformation. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymol 1120(2):123−43 doi: 10.1016/0167-4838(92)90261-B |
[31] |
Baronio CM, Baldassarre M, Barth A. 2019. Insight into the internal structure of amyloid-β oligomers by isotope-edited Fourier transform infrared spectroscopy. Physical Chemistry Chemical Physics 21(16):8587−97 doi: 10.1039/C9CP00717B |
[32] |
Lu R, Li W, Katzir A, Raichlin Y, Yu H, et al. 2015. Probing the secondary structure of bovine serum albumin during heat-induced denaturation using mid-infrared fiberoptic sensors. Analyst 140(3):765−70 doi: 10.1039/C4AN01495B |
[33] |
Shi L, Mu K, Arntfield SD, Nickerson MT. 2017. Changes in levels of enzyme inhibitors during soaking and cooking for pulses available in Canada. Journal of Food Science and Technology 54(4):1014−22 doi: 10.1007/s13197-017-2519-6 |
[34] |
Xu B, Chang S. 2008. Total phenolic content and antioxidant properties of eclipse black beans (Phaseolus vulgaris L.) as affected by processing methods. Journal of Food Science 73(2):H19−H27 doi: 10.1111/j.1750-3841.2007.00625.x |
[35] |
Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16(3):144−58 |
[36] |
Guo Y, Ma M, Jiang F, Jiang W, Wang H, Du SK. 2020. Protein quality and antioxidant properties of soymilk derived from black soybean after in vitro simulated gastrointestinal digestion. International Journal of Food Science & Technology 55(2):720−28 doi: 10.1111/ijfs.14335 |
[37] |
Zhang Y, He S, Simpson BK. 2018. Enzymes in food bioprocessing — novel food enzymes, applications, and related techniques. Current Opinion in Food Science 19:30−35 doi: 10.1016/j.cofs.2017.12.007 |
[38] |
Arzeni C, Martínez K, Zema P, Arias A, Pérez OE, et al. 2012. Comparative study of high intensity ultrasound effects on food proteins functionality. Journal of Food Engineering 108(3):463−72 doi: 10.1016/j.jfoodeng.2011.08.018 |
[39] |
Meinlschmidt P, Ueberham E, Lehmann J, Schweiggert-Weisz U, Eisner P. 2016. Immunoreactivity, sensory and physicochemical properties of fermented soy protein isolate. Food Chemistry 205:229−38 doi: 10.1016/j.foodchem.2016.03.016 |
[40] |
Zou H, Zhao N, Sun S, Dong X, Yu C. 2020. High-intensity ultrasonication treatment improved physicochemical and functional properties of mussel sarcoplasmic proteins and enhanced the stability of oil-in-water emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects 589:124463 doi: 10.1016/j.colsurfa.2020.124463 |
[41] |
Meinlschmidt P, Brode V, Sevenich R, Ueberham E, Schweiggert-Weisz U, et al. 2017. High pressure processing assisted enzymatic hydrolysis – An innovative approach for the reduction of soy immunoreactivity. Innovative Food Science & Emerging Technologies 40:58−67 doi: 10.1016/j.ifset.2016.06.022 |
[42] |
Hu H, Wu J, Li-Chan ECY, Zhu L, Zhang F, et al. 2013. Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions. Food Hydrocolloids, 30(2):647−55 doi: 10.1016/j.foodhyd.2012.08.001 |
[43] |
Jambrak AR, Lelas V, Mason TJ, Krešić G, Badanjak M. 2009. Physical properties of ultrasound treated soy proteins. Journal of Food Engineering 93(4):386−93 doi: 10.1016/j.jfoodeng.2009.02.001 |
[44] |
Karki B, Lamsal BP, Grewell D, Pometto AL III, van Leeuwen J, et al. 2009. Functional properties of soy protein isolates produced from ultrasonicated defatted soy flakes. Journal of the American Oil Chemists' Society 86(10):1021−28 doi: 10.1007/s11746-009-1433-0 |
[45] |
Krise KM. 2011. The effects of microviscosity, bound water and protein mobility on the radiolysis and sonolysis of hen egg white. PhD Thesis. Pennsylvania State University, USA. |
[46] |
Krimm S, Bandekar J. 1986. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Advances in Protein Chemistry 38:181−364 doi: 10.1016/s0065-3233(08)60528-8 |
[47] |
Synytsya A, Čopı́ková J, Matějka P, Machovič V. 2003. Fourier transform Raman and infrared spectroscopy of pectins. Carbohydrate Polymers 54(1):97−106 doi: 10.1016/S0144-8617(03)00158-9 |
[48] |
Aguilera Y, Díaz MF, Jiménez T, Benítez V, Herrera T, et al. 2013. Changes in Nonnutritional Factors and Antioxidant Activity during Germination of Nonconventional Legumes. Journal of Agricultural and Food Chemistry 61(34):8120−25 doi: 10.1021/jf4022652 |
[49] |
Vilkhu K, Mawson R, Simons L, Bates D. 2008. Applications and opportunities for ultrasound assisted extraction in the food industry — A review. Innovative Food Science & Emerging Technologies 9(2):161−69 doi: 10.1016/j.ifset.2007.04.014 |
[50] |
Rostagno MA, Palma M, Barroso CG. 2003. Ultrasound-assisted extraction of soy isoflavones. Journal of Chromatography A 1012(2):119−28 doi: 10.1016/S0021-9673(03)01184-1 |
[51] |
Paucar-Menacho LM, Berhow MA, Mandarino JMG, Chang YK, de Mejia EG. 2010. Effect of time and temperature on bioactive compounds in germinated Brazilian soybean cultivar BRS 258. Food Research International 43(7):1856−65 doi: 10.1016/j.foodres.2009.09.016 |
[52] |
Bartolomé B, Estrella I, Hernández T. 1997. Changes in phenolic compounds in lentils (Lens culinaris) during germination and fermentation. Zeitschrift für Lebensmitteluntersuchung und-Forschung A 205(4):290−94 doi: 10.1007/s002170050167 |