[1]

Chen J. 2011. Theory and application of generalized life cycle cost of urban rail transit project. Doctoral dissertation. Beijing Jiaotong University, P. R. China. (in Chinese)

[2]

Mitchell LE, Crosman ET, Jacques AA, Fasoli B, Leclair-Marzolf L, et al. 2018. Monitoring of greenhouse gases and pollutants across an urban area using a light-rail public transit platform. Atmospheric Environment 187:9−23

doi: 10.1016/j.atmosenv.2018.05.044
[3]

Lee JY, Lee CK, Chun YY. 2020. Greenhouse gas emissions from high-speed rail infrastructure construction in Korea. Transportation Research Part D: Transport and Environment 87:102514

doi: 10.1016/j.trd.2020.102514
[4]

Åkerman J. 2011. The role of high-speed rail in mitigating climate change - The Swedish case Europabanan from a life cycle perspective. Transportation Research Part D: Transport and Environment 16:208−17

doi: 10.1016/j.trd.2010.12.004
[5]

Chang B, Kendall A. 2011. Life cycle greenhouse gas assessment of infrastructure construction for California's high-speed rail system. Transportation Research Part D: Transport and Environment 16:429−34

doi: 10.1016/j.trd.2011.04.004
[6]

Chen P, Lu Y, Wan Y, Zhang A. 2021. Assessing carbon dioxide emissions of high-speed rail: The case of Beijing-Shanghai corridor. Transportation Research Part D: Transport and Environment 97:102949

doi: 10.1016/j.trd.2021.102949
[7]

Westin J, Kågeson P. 2012. Can high speed rail offset its embedded emissions? Transportation Research Part D: Transport and Environment 17:1−7

doi: 10.1016/j.trd.2011.09.006
[8]

Jiang C, Wan Y, Yang H, Zhang A. 2021. Impacts of high-speed rail projects on CO2 emissions due to modal interactions: A review. Transportation Research Part D: Transport and Environment 100:103081

doi: 10.1016/j.trd.2021.103081
[9]

von Rozycki C, Koeser H, Schwarz H. 2003. Ecology profile of the German high-speed rail passenger transport system, ICE. International Journal of Life Cycle Assessment 8:83−91

doi: 10.1007/BF02978431
[10]

Cheng S, Lin J, Xu W, Yang D, Liu J, et al. 2020. Carbon, water, land and material footprints of China’s high-speed railway construction. Transportation Research Part D: Transport and Environment 82:102314

doi: 10.1016/j.trd.2020.102314
[11]

Lin J, Li H, Huang W, Xu W, Cheng S. 2019. A Carbon Footprint of High-Speed Railways in China: A Case Study of the Beijing-Shanghai Line. Journal of Industrial Ecology 23:869−78

doi: 10.1111/jiec.12824
[12]

Chester M, Horvath A. 2010. Life-cycle assessment of high-speed rail: the case of California. Environmental Research Letters 5:014003

doi: 10.1088/1748-9326/5/1/014003
[13]

Chester MV, Ryerson MS. 2014. Grand challenges for high-speed rail environmental assessment in the United States. Transportation Research Part A: Policy and Practice 61:15−26

doi: 10.1016/j.tra.2013.12.007
[14]

Yue Y, Wang T, Liang S, Yang J, Hou P, et al. 2015. Life cycle assessment of High Speed Rail in China. Transportation Research Part D: Transport and Environment 41:367−76

doi: 10.1016/j.trd.2015.10.005
[15]

Yang X, Lin S, Li Y, He M. 2019. Can high-speed rail reduce environmental pollution? Evidence from China. Journal of Cleaner Production 239:118135

doi: 10.1016/j.jclepro.2019.118135
[16]

Chen J, Wang X, Wang X, Ma X, Chen Y. 2016. Calculation of carbon dioxide emission in the life cycle of high-speed railway. Journal of The China Railway Society 38:47−55

[17]

Yang Y, Yuan Z, Chen J, Li J, Wang W. 2021. The energy consumption conservation and carbon emission reduction for high-speed railway based on LCA. Journal of Transportation Engineering 21:89−96

doi: 10.13986/j.cnki.jote.2021.04.013
[18]

Fouracre P, Dunkerley C, Gardner G. 2003. Mass rapid transit systems for cities in the developing world. Transport Reviews 23:299−310

doi: 10.1080/0144164032000083095
[19]

González-Gil A, Palacin R, Batty P. 2013. Sustainable urban rail systems: Strategies and technologies for optimal management of regenerative braking energy. Energy Conversion and Management 75:374−88

doi: 10.1016/j.enconman.2013.06.039
[20]

Mulley C, Hensher DA, Cosgrove D. 2017. Is rail cleaner and greener than bus? Transportation Research Part D: Transport and Environment 51:14−28

doi: 10.1016/j.trd.2016.12.004
[21]

Cai R, Zhao C. 2015. Study on Decision-Making Process for Choosing an Appropriate High Speed Transit. 2015 International Conference on Transportation Information and Safety (ICTIS), Wuhan, CHINA, 25−28 June 2015. USA: IEEE. pp. 386−92. https://doi.org/10.1109/ICTIS.2015.7232185

[22]

Puchalsky CM. 2005. Comparison of emissions from light rail transit and bus rapid transit. Transportation research record 1927:31−37

doi: 10.1177/0361198105192700104
[23]

Wei P, Pan H. 2017. Research on individual carbon dioxide emissions of commuting in peri-urban area of metropolitan cities — an empirical study in Shanghai. Transportation Research Procedia 25:3459−78

doi: 10.1016/j.trpro.2017.05.253
[24]

Yang Y, Zhang P, Ni S. 2014. Assessment of the Impacts of urban rail transit on metropolitan regions using system dynamics model. Transportation Research Procedia 4:521−34

doi: 10.1016/j.trpro.2014.11.040
[25]

Wang Z, Chen F, Fujiyama T. 2015. Carbon emission from urban passenger transportation in Beijing. Transportation Research Part D:Transport and Environment 41:217−27

doi: 10.1016/j.trd.2015.10.001
[26]

Saxe S, Casey G, Guthrie P, Soga K, Cruickshank H. 2016. Greenhouse gas considerations in rail infrastructure in the UK. Proceedings of the Institution of Civil Engineers - Engineering Sustainability 169:171−80

doi: 10.1680/jensu.15.00015
[27]

Mendoza DL, Buchert MP, Lin JC. 2019. Modeling net effects of transit operations on vehicle miles traveled, fuel consumption, carbon dioxide, and criteria air pollutant emissions in a mid-size US metro area: findings from Salt Lake City, UT. Environmental Research Communications 1:091002

doi: 10.1088/2515-7620/ab3ca7
[28]

Yang L, Wang Y, Lian Y, Dong X, Liu J, et al. 2022. Rational planning strategies of urban structure, metro, and car use for reducing transport carbon dioxide emissions in developing cities. Environment, Development and Sustainability 0:1−24

doi: 10.1007/s10668-022-02344-0
[29]

Sun C, Zhang W, Luo Y, Xu Y. 2019. The improvement and substitution effect of transportation infrastructure on air quality: An empirical evidence from China's rail transit construction. Energy Policy 129:949−57

doi: 10.1016/j.enpol.2019.03.005
[30]

Lee S. 2018. Transport demand management in developing countries and climate change. Journal of The Korean Society of Disaster Information 14:288−95

[31]

Saxe S, Miller E, Guthrie P. 2017. The net greenhouse gas impact of the Sheppard Subway Line. Transportation Research Part D:Transport and Environment 51:261−75

doi: 10.1016/j.trd.2017.01.007
[32]

Lederer J, Ott C, Brunner PH, Ossberger M. 2016. The life cycle energy demand and greenhouse gas emissions of high-capacity urban transport systems: A case study from Vienna's subway line U2. International Journal of Sustainable Transportation 10:120−30

doi: 10.1080/15568318.2013.869704
[33]

Andrade C, D’Agosto M. 2016. The role of rail transit systems in reducing energy and carbon dioxide emissions: The case of the city of Rio de Janeiro. Sustainability 8:150

doi: 10.3390/su8020150
[34]

Chen F, Shen X, Wang Z, Yang Y. 2017. An evaluation of the low-carbon effects of urban rail based on mode shifts. Sustainability 9:401

doi: 10.3390/su9030401
[35]

Fageda X. 2021. Do light rail systems reduce traffic externalities? Empirical evidence from mid-size european cities Transportation Research Part D: Transport and Environment 92:102731

doi: 10.1016/j.trd.2021.102731
[36]

Yu W, Wang T, Xiao Y, Chen J, Yan X. 2020. A carbon emission measurement method for individual travel based on transportation big data: The case of Nanjing metro. International Journal of Environmental Research and Public Health 17:5957

doi: 10.3390/ijerph17165957
[37]

Zhang L, Long R, Chen H. 2019. Carbon emission reduction potential of urban rail transit in China based on electricity consumption structure. Resources Conservation and Recycling 142:113−21

doi: 10.1016/j.resconrec.2018.11.019
[38]

Chester M, Eisenstein W, Pincetl S, Elizabeth Z, Matute J, et al. 2012. Environmental Life-cycle Assessment of Los Angeles Metro's Orange Bus Rapid Transit and Gold Light Rail Transit Lines. Center for Earth Systems Engineering and Management. School of Sustainable Engineering and the Built Environment. Arizona State University. http://seeds4green.net/sites/default/files/chester-ASU-SSEBE-CESEM-2012-WPS-003.pdf

[39]

Sadeghi A. 2022. Assessing the impact of powerplant fuel type and trip modal shift on pollutant emissions of mashhad light rail transit. Atmospheric Pollution Research 13:101389

doi: 10.1016/j.apr.2022.101389
[40]

Dimoula V, Kehagia F, Tsakalidis A. 2016. A holistic approach for estimating carbon emissions of road and rail transport systems. Aerosol and Air Quality Research 16:61−68

doi: 10.4209/aaqr.2015.05.0313
[41]

Zhou F, Zhang J. 2019. Freight Transport Mode Based on Public Transport: Taking Parcel Delivery by Subway as an Example. Proc. 6th International Conference on Transportation Engineering (ICTE), September 2022, 2019, Chengdu, China. New York, USA: American Society of Civil Engineers. pp. 745-54. https://doi.org/10.1061/9780784482742.083

[42]

Han B, Li Y, Lu F, Yang Z, Yang R, et al. 2022. Statistical analysis of urban rail transit operations in the world in 2021: A review. Urban Rapid Rail Transit 35:5−11

doi: 10.3969/j.issn.1672-6073.2022.01.002
[43]

Li Y, He Q, Luo X, Zhang Y, Dong L. 2018. Calculation of life-cycle greenhouse gas emissions of urban rail transit systems: A case study of Shanghai metro. Resources, Conservation and Recycling 128:451−57

doi: 10.1016/j.resconrec.2016.03.007
[44]

Sanches de Andrade CE, D'Agosto MdA. 2019. Evaluation of subway systems in CO2 emissions: Comparative analysis of emissions from cars, buses and subways. Engenharia Sanitaria E Ambiental 24:919−27

doi: 10.1590/s1413-41522019139710
[45]

Saxe S, Kasraian D. 2020. Rethinking environmental LCA life stages for transport infrastructure to facilitate holistic assessment. Journal of Industrial Ecology 24:1031−46

doi: 10.1111/jiec.13010
[46]

Banar M, Özdemir A. 2015. An evaluation of railway passenger transport in Turkey using life cycle assessment and life cycle cost methods. Transportation Research Part D: Transport and Environment 41:88−105

doi: 10.1016/j.trd.2015.09.017
[47]

Horvath A. 2006. Environmental assessment of freight transportation in the US. The International Journal of Life Cycle Assessment 11:229−39

doi: 10.1065/lca2006.02.244
[48]

Chester MV, Horvath A, Madanat S. 2010. Comparison of life-cycle energy and emissions footprints of passenger transportation in metropolitan regions. Atmospheric Environment 44:1071−79

doi: 10.1016/j.atmosenv.2009.12.012
[49]

Trevisan L, Bordignon M. 2020. Screening Life Cycle Assessment to compare CO2 and Greenhouse Gases emissions of air, road, and rail transport: An exploratory study. Procedia CIRP 90:303−9

doi: 10.1016/j.procir.2020.01.100
[50]

Chester MV, Horvath A. 2009. Environmental assessment of passenger transportation should include infrastructure and supply chains. Environmental Research Letters 4:024008

doi: 10.1088/1748-9326/4/2/024008
[51]

Chester MV. 2008. Life-cycle environmental inventory of passenger transportation modes in the united states (Order No. 3353176). USA: Institute of Transportation Studies at UC Berkeley. www.proquest.com/dissertations-theses/life-cycle-environmental-inventory-passenger/docview/304696203/se-2

[52]

Hao H, Geng Y, Wang H, Ouyang M. 2014. Regional disparity of urban passenger transport associated GHG (greenhouse gas) emissions in China: A review. Energy 68:783−93

doi: 10.1016/j.energy.2014.01.008
[53]

Pomykala A. 2018. Effectiveness of urban transport modes. Proc. 13th International Conference Modern Electrified Transport (MET), October 5−7, 2017, Warsaw, Poland. 180:03003. Les Ulis, France: EDP Sciences. https://doi.org/10.1051/matecconf/201818003003

[54]

Olugbenga O, Kalyviotis N, Saxe S. 2019. Embodied emissions in rail infrastructure: a critical literature review. Environmental Research Letters 14:123002

doi: 10.1088/1748-9326/ab442f
[55]

Jovanovic MM. 2016. Belgrade's Urban Transport CO2 Emissions from an International Perspective. Polish Journal of Environmental Studies 25:635−46

doi: 10.15244/pjoes/61259
[56]

Goel D, Gupta S. 2017. The Effect of Metro Expansions on Air Pollution in Delhi. World Bank Economic Review 31:271−94

doi: 10.1093/wber/lhv056
[57]

Procter A, Bassi A, Kolling J, Cox L, Flanders N, et al. 2017. The effectiveness of Light Rail transit in achieving regional CO2 emissions targets is linked to building energy use: insights from system dynamics modeling. Clean Technologies and Environmental Policy 19:1459−74

doi: 10.1007/s10098-017-1343-z
[58]

Pritchard JA, Preston J. 2018. Understanding the contribution of tunnels to the overall energy consumption of and carbon emissions from a railway. Transportation Research Part D: Transport and Environment 65:551−63

doi: 10.1016/j.trd.2018.09.010
[59]

Saxe S, Cruickshank H, Miller E. 2015. Greenhouse Gas Impact of Ridership on Sheppard Subway Line, Toronto, Canada. Transportation Research Record 2502:62−70

doi: 10.3141/2502-08
[60]

Chester M, Pincetl S, Elizabeth Z, Eisenstein W, Matute J. 2013. Infrastructure and automobile shifts: positioning transit to reduce life-cycle environmental impacts for urban sustainability goals. Environmental Research Letters 8:015041

doi: 10.1088/1748-9326/8/1/015041
[61]

Chen J, Gao G, Wang X, Wang X. 2014. Calculation method of whole life-cycle energy consumption for urban rail transit. Journal of Traffic and Transportation Engineering 14:89−97

doi: 10.3969/j.issn.1671-1637.2014.04.011
[62]

Liu M, Jia S, He X. 2018. A quota-based GHG emissions quantification model for the construction of subway stations in China. Journal of Cleaner Production 198:847−58

doi: 10.1016/j.jclepro.2018.07.067
[63]

Liu M, Jia S, Li P, Liu X, Zhang Y. 2020. Predicting GHG emissions from subway lines in the planning stage on a city level. Journal of Cleaner Production 259:120823

doi: 10.1016/j.jclepro.2020.120823
[64]

Liu M, Jia S, Liu X. 2019. Evaluation of mitigation potential of GHG emissions from the construction of prefabricated subway station. Journal of Cleaner Production 236:117700

doi: 10.1016/j.jclepro.2019.117700
[65]

Liu M, Jia S, Wang X. 2021. Environmental impact analysis for the construction of subway stations: Comparison between open-excavation and underground-excavation scheme. Environmental Impact Assessment Review 91:106644

doi: 10.1016/j.eiar.2021.106644
[66]

Zhang N, Duan H, Sun P, Li J, Zuo J, et al. 2020. Characterizing the generation and environmental impacts of subway-related excavated soil and rock in China. Journal of Cleaner Production 248:119242

doi: 10.1016/j.jclepro.2019.119242
[67]

Zhang N, Zhang H, Schiller G, Feng H, Gao X, et al. 2021. Unraveling the global warming mitigation potential from recycling subway-related excavated soil and rock in China via life cycle assessment. Integrated Environmental Assessment and Management 17:639−50

doi: 10.1002/ieam.4376
[68]

Makarchuk B, Saxe S. 2019. Temporal assessment of the embodied greenhouse gas emissions of a toronto streetcar line. Journal of Infrastructure Systems 25:06019001

doi: 10.1061/(ASCE)IS.1943-555X.0000475
[69]

Krezo S, Mirza O, He Y, Makim P, Kaewunruen S. 2016. Field investigation and parametric study of greenhouse gas emissions from railway plain-line renewals. Transportation Research Part D: Transport and Environment 42:77−90

doi: 10.1016/j.trd.2015.10.021
[70]

Saxe S, Denman S. 2017. Greenhouse gas from ridership on the Jubilee Line Extension. Proceedings of the Institution of Civil Engineers - Transport 170:108−20

doi: 10.1680/jtran.15.00095
[71]

Saxe S, Guthrie P. 2020. The net greenhouse gas impact of the Jubilee line extension in London, UK. Proceedings of the Institution of Civil Engineers - Engineering Sustainability 173:184−95

doi: 10.1680/jensu.19.00006
[72]

Krezo S, Mirza O, Kaewunruen S, Sussman JM. 2018. Evaluation of CO2 emissions from railway resurfacing maintenance activities. Transportation Research Part D: Transport and Environment 65:458−65

doi: 10.1016/j.trd.2018.09.019
[73]

Tuchschmid M, Knörr W, Schacht A, Mottschall M, Schmied M. 2011. Carbon Footprint and environmental impact of Railway In-frastructure. International Union of Railways, UIC, 2011 En línea. https://uic.org/IMG/pdf/uic_rail_infrastructure_111104.pdf

[74]

Wei T, Chen S. 2020. Dynamic energy and carbon footprints of urban transportation infrastructures: Differentiating between existing and newly-built assets. Applied Energy 277:115554

doi: 10.1016/j.apenergy.2020.115554
[75]

Hanson CS, Noland RB, Porter CD. 2016. Greenhouse gas emissions associated with materials used in commuter rail lines. International Journal of Sustainable Transportation 10:475−84

doi: 10.1080/15568318.2014.985859
[76]

Liu C, Wang T. 2017. Identifying and mapping local contributions of carbon emissions from urban motor and metro transports: A weighted multiproxy allocating approach. Computers Environment and Urban Systems 64:132−43

doi: 10.1016/j.compenvurbsys.2017.01.010
[77]

Lee S, Suzuki T. 2016. A scenario approach to the evaluation of sustainable urban structure for reducing carbon dioxide emissions in Seoul. International Journal of Urban Sciences 20:30−48

doi: 10.1080/12265934.2015.1113141
[78]

Andrade CESd, D'Agosto MdA. 2016. Energy use and carbon dioxide emissions assessment in the lifecycle of passenger rail systems: the case of the Rio de Janeiro Metro. Journal of Cleaner Production 126:526−36

doi: 10.1016/j.jclepro.2016.03.094
[79]

Kimball M, Chester M, Gino C, Reyna J. 2013. Assessing the potential for reducing life-cycle environmental impacts through transit-oriented development infill along existing light rail in Phoenix. Journal of Planning Education and Research 33:395−410

doi: 10.1177/0739456X13507485
[80]

Del Pero F, Delogu M, Pierini M, Bonaffini D. 2015. Life cycle assessment of a heavy metro train. Journal of Cleaner Production 87:787−99

doi: 10.1016/j.jclepro.2014.10.023
[81]

Isler CA, Blumenfeld M, Roberts C. 2022. Assessment of railway infrastructure improvements: valuation of costs, energy consumption and emissions. Sustainable Energy Technologies and Assessments 52:102179

doi: 10.1016/j.seta.2022.102179
[82]

Li T, Zhu E. 2022. Quantifying carbon emissions generated by monorail transits: A life cycle assessment approach. Computational Intelligence and Neuroscience 2022:3872069

doi: 10.1155/2022/3872069
[83]

Gulcimen S, Aydogan EK, Uzal N. 2021. Life cycle sustainability assessment of a light rail transit system: Integration of environmental, economic, and social impacts. Integrated Environmental Assessment and Management 17:1070−82

doi: 10.1002/ieam.4428
[84]

Bhandari K, Advani M, Parida P, Gangopadhyay S. 2014. Consideration of access and egress trips in carbon footprint estimation of public transport trips: case study of Delhi. Journal of Cleaner Production 85:234−40

doi: 10.1016/j.jclepro.2014.05.013
[85]

Li X, Lv T, Zhan J, Wang S, Pan F. 2022. Carbon emission measurement of urban green passenger transport: A case study of Qingdao. Sustainability 14:9588

doi: 10.3390/su14159588
[86]

To WM, Lee PKC, Yu BTW. 2020. Sustainability assessment of an urban rail system - The case of Hong Kong. Journal of Cleaner Production 253:119961

doi: 10.1016/j.jclepro.2020.119961
[87]

Chen X, Wang Z. 2013. Low-Carbon Scenario Analysis on Urban Transport of a Metropolitan of China in 2020. Proceedings of International Conference on Low-Carbon Transportation and Logistics, and Green Buildings (LTLGB). Heidelberg: Springer, Berlin. pp. 341−45. https://doi.org/10.1007/978-3-642-34651-4_49

[88]

Hu Y, Chen F, Shen W, Wu Q. 2013. Model Calculating on Integrated Traffic Energy Consumption and Carbon Emissions in Beijing. Proceedings of International Conference on Low-Carbon Transportation and Logistics, and Green Buildings (LTLGB). Heidelberg: Springer, Berlin. pp. 119−26. https://doi.org/10.1007/978-3-642-34651-4_22

[89]

Kudo N, Nakamura H. 2013. Estimation of the environmental load caused by introducing Light Rail Transit using an Urban Transportation Simulator. Applied Mechanics and Materials 295−298:669−72

doi: 10.4028/www.scientific.net/amm.295-298.669
[90]

Mallia DV, Mitchell LE, Kunik L, Fasoli B, Bares R, et al. 2020. Constraining urban CO2 emissions using mobile observations from a light rail public transit platform. Environmental Science & Technology 54:15613−21

doi: 10.1021/acs.est.0c04388
[91]

Hu Y, Chen F, Huang Y. 2012. Prospective prognosis of Beijing urban transportation energy consumption and carbon emission. Applied Mechanics and Materials 253-255:1121−29

doi: 10.4028/www.scientific.net/amm.253-255.1121
[92]

Dong D, Duan H, Mao R, Song Q, Zuo J, et al. 2018. Towards a low carbon transition of urban public transport in megacities: A case study of Shenzhen, China. Resources Conservation and Recycling 134:149−55

doi: 10.1016/j.resconrec.2018.03.011
[93]

Ha Anh N, Soltani A, Allan A. 2018. Adelaide's East End tramline: Effects on modal shift and carbon reduction. Travel Behaviour and Society 11:21−30

doi: 10.1016/j.tbs.2017.12.002
[94]

Doll CNH, Balaban O. 2013. A methodology for evaluating environmental co-benefits in the transport sector: application to the Delhi metro. Journal of Cleaner Production 58:61−73

doi: 10.1016/j.jclepro.2013.07.006
[95]

Sharma N, Singh A, Dhyani R, Gaur S. 2014. Emission reduction from MRTS projects - A case study of Delhi metro. Atmospheric Pollution Research 5:721−8

doi: 10.5094/APR.2014.081
[96]

Soni AR, Chandel MK. 2018. Assessment of emission reduction potential of Mumbai metro rail. Journal of Cleaner Production 197:1579−86

doi: 10.1016/j.jclepro.2018.06.216
[97]

Kaewunruen S, Peng S, Phil-Ebosie O. 2020. Digital twin aided sustainability and vulnerability audit for subway stations. Sustainability 12:7873

doi: 10.3390/su12197873
[98]

Wang H, Yang X, Wu J, Sun H, Gao Z. 2018. Metro timetable optimisation for minimising carbon emission and passenger time: a bi-objective integer programming approach. Iet Intelligent Transport Systems 12:673−81

doi: 10.1049/iet-its.2017.0156
[99]

Logan KG, Nelson JD, McLellan BC, Hastings A. 2020. Electric and hydrogen rail: Potential contribution to net zero in the UK. Transportation Research Part D: Transport and Environment 87:102523

doi: 10.1016/j.trd.2020.102523
[100]

Zhang N, Wang Z, Chen F, Song J, Wang J, et al. 2020. Low-Carbon Impact of Urban Rail Transit Based on Passenger Demand Forecast in Baoji. Energies 13:782

doi: 10.3390/en13040782
[101]

Shen W, Chen F, Wang Z. 2013. The Development and Application of Transport Energy Consumption and Greenhouse Gas Emission Calculation Software Based on the Beijing Low-Carbon Transport Research. Proc. International Conference on Low-carbon Transportation and Logistics, and Green Buildings (LTLGB), Beijing Jiaotong Univ, Beijing, P. R. China, 2012: 237−41. Heidelberg: Springer, Berlin. https://doi.org/10.1007/978-3-642-34651-4_36

[102]

Aggarwal P, Jain S. 2016. Energy demand and CO2 emissions from urban on-road transport in Delhi: current and future projections under various policy measures. Journal of Cleaner Production 128:48−61

doi: 10.1016/j.jclepro.2014.12.012
[103]

James CA, John CM, Menon R. 2018. Assessment of spatio-temporal changes in terrestrial carbon sequestration due to Kochi metro rail project in India. Urban Climate 24:703−13

doi: 10.1016/j.uclim.2017.08.007
[104]

Saxe S, Guven G, Pereira L, Arrigoni A, Opher T, et al. 2020. Taxonomy of uncertainty in environmental life cycle assessment of infrastructure projects. Environmental Research Letters 15:083003

doi: 10.1088/1748-9326/ab85f8
[105]

Advani M, Sharma N, Errampalli M, Rane Y, Dhyani R, Kumar PVP. 2022. Gradual sustainability approach for urban transport through subtle measures. Current Science 122:1036−43

doi: 10.18520/cs/v122/i9/1036-1043
[106]

Liu W, Lund H, Mathiesen BV. 2013. Modelling the transport system in China and evaluating the current strategies towards the sustainable transport development. Energy Policy 58:347−57

doi: 10.1016/j.enpol.2013.03.032
[107]

De Bortoli A, Christoforou Z. 2020. Consequential LCA for territorial and multimodal transportation policies: method and application to the free-floating e-scooter disruption in Paris. Journal of Cleaner Production 273:122898

doi: 10.1016/j.jclepro.2020.122898
[108]

Yang Y, Yuan Z, Chen J, Guo M. 2017. Assessment of osculating value method based on entropy weight to transportation energy conservation and emission reduction. Environmental Engineering and Management Journal 16:2413−23

doi: 10.30638/eemj.2017.249
[109]

Yang Y, Yuan Z, Yang X, Chen J. 2016. Research on energy-saving and emission reduction evaluation about transportation industry based osculating value method. Transactions of Beijing institute of Technology (in Chinese) 36(S2):189−92

[110]

Majumdar D, Purohit P, Bhanarkar AD, Rao PS, Rafaj P, et al. 2020. Managing future air quality in megacities: Emission inventory and scenario analysis for the Kolkata Metropolitan City, India. Atmospheric Environment 222:117135

doi: 10.1016/j.atmosenv.2019.117135
[111]

Ke Q. 2019. Analysis on the Effect of Rail Traffic Power Dispatching Information System Construction on Energy Saving and Emission Reduction. Proc. 5th International Conference on Green Power, Materials and Manufacturing Technology and Applications (GPMMTA), 2019, Taiyuan, P. R. China. 2185: 020036. Melville, NY, USA: AIP Publishing. https://doi.org/10.1063/1.5137880

[112]

Chester MV, Nahlik MJ, Fraser AM, Kimball MA, Garikapati VM. 2013. Integrating Life-cycle Environmental and Economic Assessment with Transportation and Land Use Planning. Environmental Science & Technology 47:12020−28

doi: 10.1021/es402985g
[113]

Clark TA. 2013. Metropolitan density, energy efficiency and carbon emissions: Multi-attribute tradeoffs and their policy implications. Energy Policy 53:413−28

doi: 10.1016/j.enpol.2012.11.006
[114]

Lin D, Broere W, Cui J. 2022. Metro systems and urban development: Impacts and implications. Tunnelling and Underground Space Technology 125:104509

doi: 10.1016/j.tust.2022.104509
[115]

Vermote L, Macharis C, Hollevoet J, Putman K. 2014. Participatory evaluation of regional light rail scenarios: A Flemish case on sustainable mobility and land-use. Environmental Science & Policy 37:101−20

doi: 10.1016/j.envsci.2013.08.013
[116]

Gassner A, Lederer J, Kanitschar G, Ossberger M, Fellner J. 2018. Extended ecological footprint for different modes of urban public transport: The case of Vienna, Austria. Land Use Policy 72:85−99

doi: 10.1016/j.landusepol.2017.12.012