[1] |
Sugimoto K, Gordon SP, Meyerowitz EM. 2011. Regeneration in plants and animals: dedifferentiation, transdifferentiation, or just differentiation? Trends in Cell Biology 21:212−18 doi: 10.1016/j.tcb.2010.12.004 |
[2] |
Yu Y, Meng N, Chen S, Zhang H, Liu Z, et al. 2022. Transcriptomic profiles of poplar (Populus simonii × P. nigra) cuttings during adventitious root formation. Frontiers in Genetics 13:968544 doi: 10.3389/fgene.2022.968544 |
[3] |
Melnyk CW, Schuster C, Leyser O, Meyerowitz EM. 2015. A developmental framework for graft formation and vascular reconnection in Arabidopsis thaliana. Current Biology 25:1306−18 doi: 10.1016/j.cub.2015.03.032 |
[4] |
Melnyk CW. 2017. Connecting the plant vasculature to friend or foe. New Phytologist 213:1611−7 doi: 10.1111/nph.14218 |
[5] |
Wang J, Jiang L, Wu R. 2017. Plant grafting: how genetic exchange promotes vascular reconnection. New Phytologist 214:56−65 doi: 10.1111/nph.14383 |
[6] |
Sang Y, Cheng Z, Zhang X. 2018. Plant stem cells and de novo organogenesis. New phytologist 218:1334−9 doi: 10.1111/nph.15106 |
[7] |
Xu L. 2018. De novo root regeneration from leaf explants: wounding, auxin, and cell fate transition. Current Opinion in Plant Biology 41:39−45 doi: 10.1016/j.pbi.2017.08.004 |
[8] |
Williams LE. 2021. Genetics of shoot meristem and shoot regeneration. Annual Review of Genetics 55:661−81 doi: 10.1146/annurev-genet-071719-020439 |
[9] |
Shanmukhan AP, Mathew MM, Radhakrishnan D, Aiyaz M, Prasad K. 2020. Regrowing the damaged or lost body parts. Current Opinion in Plant Biology 53:117−27 doi: 10.1016/j.pbi.2019.12.007 |
[10] |
Omary M, Matosevich R, Efroni I. 2022. Systemic control of plant regeneration and wound repair. New Phytologist 237:408−13 doi: 10.1111/nph.18487 |
[11] |
Xu M, Du Q, Tian C, Wang Y, Jiao Y. 2021. Stochastic gene expression drives mesophyll protoplast regeneration. Science Advances 7:eabg8466 doi: 10.1126/sciadv.abg8466 |
[12] |
Zhu T, Wang J, Hu J, Ling J. 2022. Mini review: application of the somatic embryogenesis technique in conifer species. Forestry Research 2:18 doi: 10.48130/fr-2022-0018 |
[13] |
Ikeuchi M, Ogawa Y, Iwase A, Sugimoto K. 2016. Plant regeneration: cellular origins and molecular mechanisms. Development 143:1442−51 doi: 10.1242/dev.134668 |
[14] |
Asahina M, Satoh S. 2015. Molecular and physiological mechanisms regulating tissue reunion in incised plant tissues. Journal of Plant Research 128:381−88 doi: 10.1007/s10265-015-0705-z |
[15] |
Chen J, Zhang J, He X. 2014. Tissue regeneration after bark girdling: an ideal research tool to investigate plant vascular development and regeneration. Physiologia Plantarum 151:147−55 doi: 10.1111/ppl.12112 |
[16] |
Zhou W, Lozano-Torres J, Blilou I, Zhang X, Zhai Q, et al. 2019. A jasmonate signaling network activates root stem cells and promotes regeneration. Cell 177:942−956.e14 doi: 10.1016/j.cell.2019.03.006 |
[17] |
Efroni I, Mello A, Nawy T, Ip PL, Rahni R, et al. 2016. Root regeneration triggers an embryo-like sequence guided by hormonal interactions. Cell 165:1721−33 doi: 10.1016/j.cell.2016.04.046 |
[18] |
Reinhardt D, Frenz M, Mandel T, Kuhlemeier C. 2003. Microsurgical and laser ablation analysis of interactions between the zones and layers of the tomato shoot apical meristem. Development 130:4073−83 doi: 10.1242/dev.00596 |
[19] |
Asahina M, Iwai H, Kikuchi A, Yamaguchi S, Kamiya Y, et al. 2002. Gibberellin produced in the cotyledon is required for cell division during tissue reunion in the cortex of cut cucumber and tomato hypocotyls. Plant Physiology 129:201−10 doi: 10.1104/pp.010886 |
[20] |
Asahina M, Azuma K, Pitaksaringkarn W, Yamazaki T, Mitsuda N, et al. 2011. Spatially selective hormonal control of RAP2.6L and ANAC071 transcription factors involved in tissue reunion inArabidopsis. Proceedings of the National Academy of Sciences of the United States of America 108:16128−32 doi: 10.1073/pnas.1110443108 |
[21] |
Fischer U, Kucukoglu M, Helariutta Y, Bhalerao RP. 2019. The dynamics of cambial stem cell activity. Annual Review of Plant Biology 70:293−319 doi: 10.1146/annurev-arplant-050718-100402 |
[22] |
Zhang J, Gao G, Chen J, Taylor G, Cui K, et al. 2011. Molecular features of secondary vascular tissue regeneration after bark girdling in Populus. New Phytologist 192:869−84 doi: 10.1111/j.1469-8137.2011.03855.x |
[23] |
Zhai N, Xu L. 2021. Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration. Nature Plants 7:1453−60 doi: 10.1038/s41477-021-01015-8 |
[24] |
Borthakur D, Busov V, Cao XH, Du Q, Gailing O, et al. 2022. Current status and trends in forest genomics. Forestry Research 2:11 doi: 10.48130/fr-2022-0011 |
[25] |
Pak S, Li C. 2022. Progress and challenges in applying CRISPR/Cas techniques to the genome editing of trees. Forestry Research 2:6 doi: 10.48130/fr-2022-0006 |
[26] |
Chen J, Wang L, Immanen J, Nieminen K, Spicer R, et al. 2019. Differential regulation of auxin and cytokinin during the secondary vascular tissue regeneration in Populus trees. New Phytologist 224:188−201 doi: 10.1111/nph.16019 |
[27] |
Rivas F, Gravina A, Agustí M. 2007. Girdling effects on fruit set and quantum yield efficiency of PSII in two Citrus cultivars. Tree Physiology 27:527−35 doi: 10.1093/treephys/27.4.527 |
[28] |
Shu B, Li W, Liu L, Wei Y, Shi S. 2016. Transcriptomes of arbuscular mycorrhizal fungi and litchi host interaction after tree girdling. Frontiers in Microbiology 7:408 doi: 10.3389/fmicb.2016.00408 |
[29] |
Lee C, Cui K, Yu C, Chang X. 1981. Anatomical studies of regeneration after ringing of Eucommia ulmoides. Acta Botanica Sinica 23:6−13 |
[30] |
Cui K, Wu S, Wei L, Little CHA. 1995. Effect of exogenous IAA on the regeneration of vascular tissues and periderm in girdled Betula pubescens stems. Chinese Journal of Botany 7:17−23 |
[31] |
Du J, Xie H, Zhang D, He X, Wang M, et al. 2006. Regeneration of the secondary vascular system in poplar as a novel system to investigate gene expression by a proteomic approach. Proteomics 6:881−95 doi: 10.1002/pmic.200401348 |
[32] |
Lu P, Cui K, Li Z. 1987. Preliminary investigations of the regeneration of 14 seed plants after girdling. Acta Botanica Sinica 29:111−13 |
[33] |
Liu Q, Li Z. 1990. The effects of plant growth substances on rind-regeneration after girdling in Solanum melongena cv. esculantum. Acta Botanica Sinica 12:969−72 |
[34] |
Li Z, Xu X. 1988. Tissue differentiation of the regeneration rind in Jerusalem artichoke stem. Acta Botanica Sinica 30:579−84 |
[35] |
Pang Y, Zhang J, Cao J, Yin S, He X, et al. 2008. Phloem transdifferentiation from immature xylem cells during bark regeneration after girdling in Eucommia ulmoides Oliv. Journal of Experimental Botany 59:1341−51 doi: 10.1093/jxb/ern041 |
[36] |
Peterson CA, Blais MA. 1991. A rapid method for macerating phloem. Biotechnic & Histochemistry 66:242−45 doi: 10.3109/10520299109109980 |
[37] |
Ball E. 1950. Regeneration of the shoot apex of Lupinus albus after operations upon the central initials. Science 112:16−17 doi: 10.1126/science.112.2897.16.a |
[38] |
Snow R, Snow M, Sussex IM. 1953. Regeneration of the potato shoot apex. Nature 171:224−25 doi: 10.1038/171224a0 |
[39] |
Wang Y, Shirakawa M, Ito T. 2022. Dynamic changes in reactive oxygen species in the shoot apex contribute to stem cell death inArabidopsis thaliana. International Journal of Molecular Sciences 23:3864 doi: 10.3390/ijms23073864 |
[40] |
Feldman LJ. 1976. The de novo origin of the quiescent center regenerating root apices of Zea mays. Planta 128:207−12 doi: 10.1007/BF00393230 |
[41] |
Rost TL, Jones TJ. 1988. Pea root regeneration after tip excisions at different levels: polarity of new growth. Annals of Botany 61:513−23 doi: 10.1093/oxfordjournals.aob.a087583 |
[42] |
Sena G, Wang X, Liu HY, Hofhuis H, Birnbaum KD. 2009. Organ regeneration does not require a functional stem cell niche in plants. Nature 457:1150−53 doi: 10.1038/nature07597 |
[43] |
Wang L, Chu H, Li Z, Wang J, Li J, et al. 2014. Origin and development of the root cap in rice. Plant Physiology 166:603−13 doi: 10.1104/pp.114.240929 |
[44] |
Ponce G, Luján R, Campos ME, Reyes A, Nieto-Sotelo J, et al. 2000. Three maize root-specific genes are not correctly expressed in regenerated caps in the absence of the quiescent center. Planta 211:23−33 doi: 10.1007/s004250000276 |
[45] |
van den Berg C, Willemsen V, Hage W, Weisbeek P, Scheres B. 1995. Cell fate in the Arabidopsis root meristem determined by directional signalling. Nature 378:62−65 doi: 10.1038/378062a0 |
[46] |
Hoermayer L, Montesinos JC, Marhava P, Benková E, Yoshida S, et al. 2020. Wounding-induced changes in cellular pressure and localized auxin signalling spatially coordinate restorative divisions in roots. Proceedings of the National Academy of Sciences of the United States of America 117:15322−31 doi: 10.1073/pnas.2003346117 |
[47] |
Marhava P, Hoermayer L, Yoshida S, Marhavý P, Benková E, et al. 2019. Re-activation of stem cell pathways for pattern restoration in plant wound healing. Cell 177:957−969.e3 doi: 10.1016/j.cell.2019.04.015 |
[48] |
Matsuoka K, Sato R, Matsukura Y, Kawajiri Y, Iino H, et al. 2021. Wound-inducible ANAC071 and ANAC096 transcription factors promote cambial cell formation in incised Arabidopsis flowering stems. Communications Biology 4:369 doi: 10.1038/s42003-021-01895-8 |
[49] |
Mazur ED, Friml J. 2017. Vascular tissue development and regeneration in the model plant Arabidopsis. In Plant Engineering, ed. Jurić S. Rijeka: IntechOpen. https://doi.org/10.5772/intechopen.69712 |
[50] |
Aloni R, Barnett JR. 1996. The development of phloem anastomoses between vascular bundles and their role in xylem regeneration after wounding in Cucurbita and Dahlia. Planta 198:595−603 doi: 10.1007/BF00262647 |
[51] |
Flaishman MA, Loginovsky K, Lev-Yadun S. 2003. Regenerative xylem in inflorescence stems of Arabidopsis thaliana. Journal of Plant Growth Regulation 22:253−58 doi: 10.1007/s00344-003-0030-y |
[52] |
Mazur E, Benková E, Friml J. 2016. Vascular cambium regeneration and vessel formation in wounded inflorescence stems of Arabidopsis. Scientific Reports 6:33754 doi: 10.1038/srep33754 |
[53] |
Aloni R. 2021. Vascular regeneration and grafting. In Vascular Differentiation and Plant Hormones. First Edition. Cham: Springer International Publishing. pp. 185−98. https://doi.org/10.1007/978-3-030-53202-4_10 |
[54] |
Wang M, Qi X, Zhao S, Zhang S, Lu M. 2009. Dynamic changes in transcripts during regeneration of the secondary vascular system in Populus tomentosa Carr. revealed by cDNA microarrays. BMC Genomics 10:215 doi: 10.1186/1471-2164-10-215 |
[55] |
Bonke M, Thitamadee S, Mähönen AP, Hauser MT, Helariutta Y. 2003. APL regulates vascular tissue identity in Arabidopsis. Nature 426:181−86 doi: 10.1038/nature02100 |
[56] |
Miyashima S, Hashimoto T, Nakajima K. 2009. ARGONAUTE1 acts in Arabidopsis root radial pattern formation independently of the SHR/SCR pathway. Plant and Cell Physiology 50:626−34 doi: 10.1093/pcp/pcp020 |
[57] |
Randall RS, Sornay E, Dewitte W, Murray JAH. 2015. AINTEGUMENTA and the D-type cyclin CYCD3;1 independently contribute to petal size control in Arabidopsis: evidence for organ size compensation being an emergent rather than a determined property. Journal of Experimental Botany 66:3991−4000 doi: 10.1093/jxb/erv200 |
[58] |
Kucukoglu M, Nilsson J, Zheng B, Chaabouni S, Nilsson O. 2017. WUSCHEL-RELATED HOMEOBOX4 (WOX4)-like genes regulate cambial cell division activity and secondary growth in Populus trees. New Phytologist 215:642−57 doi: 10.1111/nph.14631 |
[59] |
Liebsch D, Sunaryo W, Holmlund M, Norberg M, Zhang J, et al. 2014. Class I KNOX transcription factors promote differentiation of cambial derivatives into xylem fibers in the Arabidopsis hypocotyl. Development 141:4311−9 doi: 10.1242/dev.111369 |
[60] |
Du J, Mansfield SD, Groover AT. 2009. The Populus homeobox gene ARBORKNOX2 regulates cell differentiation during secondary growth. The Plant Journal 60:1000−14 doi: 10.1111/j.1365-313X.2009.04017.x |
[61] |
Zhang J, Eswaran G, Alonso-Serra J, Kucukoglu M, Xiang J, et al. 2019. Transcriptional regulatory framework for vascular cambium development in Arabidopsis roots. Nature Plants 5:1033−42 doi: 10.1038/s41477-019-0522-9 |
[62] |
Tang F, Wei H, Zhao S, Wang L, Zheng H, et al. 2016. Identification of microRNAs involved in regeneration of the secondary vascular system in Populus tomentosa carr. Frontiers in Plant Science 7:724 doi: 10.3389/fpls.2016.00724 |
[63] |
Wang L, Hou J, Xu H, Zhang Y, Huang R, et al. 2023. The PtoTCP20-miR396d-PtoGRF15 module regulates secondary vascular development in Populus. Plant Communications 4:100494 doi: 10.1016/j.xplc.2022.100494 |
[64] |
Nanda AK, Melnyk CW. 2018. The role of plant hormones during grafting. Journal of Plant Research 131:49−58 doi: 10.1007/s10265-017-0994-5 |
[65] |
Nieminen K, Immanen J, Laxell M, Kauppinen L, Tarkowski P, et al. 2008. Cytokinin signaling regulates cambial development in poplar. Proceedings of the National Academy of Sciences of the United States of America 105:20032−37 doi: 10.1073/pnas.0805617106 |
[66] |
Immanen J, Nieminen K, Smolander OP, Kojima M, Alonso Serra J, et al. 2016. Cytokinin and auxin display distinct but interconnected distribution and signaling profiles to stimulate cambial activity. Current Biology 26:1990−97 doi: 10.1016/j.cub.2016.05.053 |
[67] |
Hu J, Su H, Cao H, Wei H, Fu X, et al. 2022. AUXIN RESPONSE FACTOR7 integrates gibberellin and auxin signaling via interactions between DELLA and AUX/IAA proteins to regulate cambial activity in poplar. The Plant Cell 34:2688−707 doi: 10.1093/plcell/koac107 |
[68] |
Fu X, Su H, Liu S, Du X, Xu C, et al. 2021. Cytokinin signaling localized in phloem noncell-autonomously regulates cambial activity during secondary growth of Populus stems. New Phytologist 230:1476−88 doi: 10.1111/nph.17255 |
[69] |
Mwange KN, Hou H, Cui K. 2003. Relationship between endogenous indole-3-acetic acid and abscisic acid changes and bark recovery in Eucommia ulmoides Oliv. after girdling. Journal of Experimental Botany 54:1899−907 doi: 10.1093/jxb/erg204 |
[70] |
Ikeuchi M, Favero DS, Sakamoto Y, Iwase A, Coleman D, et al. 2019. Molecular mechanisms of plant regeneration. Annual Review of Plant Biology 70:377−406 doi: 10.1146/annurev-arplant-050718-100434 |
[71] |
Durgaprasad K, Roy MV, Anjali VM, Kareem A, Raj K, et al. 2019. Gradient expression of transcription factor imposes a boundary on organ regeneration potential in plants. Cell Reports 29:453−463.E3 doi: 10.1016/j.celrep.2019.08.099 |
[72] |
Matosevich R, Cohen I, Gil-Yarom N, Modrego A, Friedlander-Shani L, et al. 2020. Local auxin biosynthesis is required for root regeneration after wounding. Nature Plants 6:1020−30 doi: 10.1038/s41477-020-0737-9 |
[73] |
Heyman J, Cools T, Canher B, Shavialenka S, Traas J, et al. 2016. The heterodimeric transcription factor complex ERF115-PAT1 grants regeneration competence. Nature Plants 2:16165 doi: 10.1038/nplants.2016.165 |
[74] |
Heyman J, Cools T, Vandenbussche F, Heyndrickx KS, van Leene J, et al. 2013. ERF115 controls root quiescent center cell division and stem cell replenishment. Science 342:860−63 doi: 10.1126/science.1240667 |
[75] |
Canher B, Lanssens F, Zhang A, Bisht A, Mazumdar S, et al. 2022. The regeneration factors ERF114 and ERF115 regulate auxin-mediated lateral root development in response to mechanical cues. Molecular Plant 15:1543−57 doi: 10.1016/j.molp.2022.08.008 |
[76] |
Xu J, Hofhuis H, Heidstra R, Sauer M, Friml J, et al. 2006. A molecular framework for plant regeneration. Science 311:385−88 doi: 10.1126/science.1121790 |
[77] |
Reid JB, Ross JJ. 2011. Regulation of tissue repair in plants. Proceedings of the National Academy of Sciences of the United States of America 108:17241−42 doi: 10.1073/pnas.1114432108 |
[78] |
Asahina M, Gocho Y, Kamada H, Satoh S. 2006. Involvement of inorganic elements in tissue reunion in the hypocotyl cortex of Cucumis sativus. Journal of Plant Research 119:337−42 doi: 10.1007/s10265-006-0278-y |
[79] |
Sussex IM, Clutter ME, Goldsmith MHM. 1972. Wound recovery by pith cell redifferentiation: structure changes. American Journal of Botany 59:797−804 doi: 10.1002/j.1537-2197.1972.tb10154.x |
[80] |
Pitaksaringkarn W, Matsuoka K, Asahina M, Miura K, Sage-Ono K, et al. 2014. XTH20 and XTH19 regulated by ANAC071 under auxin flow are involved in cell proliferation in incised Arabidopsis inflorescence stems. The Plant Journal 80:604−14 doi: 10.1111/tpj.12654 |
[81] |
Zhang A, Matsuoka K, Kareem A, Robert M, Roszak P, et al. 2022. Cell-wall damage activates DOF transcription factors to promote wound healing and tissue regeneration in Arabidopsis thaliana. Current Biology 32:1883−1894.E7 doi: 10.1016/j.cub.2022.02.069 |
[82] |
Guzzo F, Baldan B, Mariani P, Schiavo FL, Terzi M. 1994. Studies on the origin of totipotent cells in explants of Daucus carota L. Journal of Experimental Botany 45:1427−32 doi: 10.1093/jxb/45.10.1427 |
[83] |
Sugimoto K, Temman H, Kadokura S, Matsunaga S. 2019. To regenerate or not to regenerate: factors that drive plant regeneration. Current Opinion in Plant Biology 47:138−50 doi: 10.1016/j.pbi.2018.12.002 |
[84] |
Marler TE. 2019. Repetitive pruning of Serianthes nursery plants improves transplant quality and post-transplant survival. Plant Signaling & Behavior 14:1621246 doi: 10.1080/15592324.2019.1621246 |
[85] |
Arbellay E, Fonti P, Stoffel M. 2012. Duration and extension of anatomical changes in wood structure after cambial injury. Journal of Experimental Botany 63:3271−77 doi: 10.1093/jxb/ers050 |
[86] |
Gardiner B, Berry P, Moulia B. 2016. Review: wind impacts on plant growth, mechanics and damage. Plant Science 245:94−118 doi: 10.1016/j.plantsci.2016.01.006 |
[87] |
Iwase A, Kondo Y, Laohavisit A, Takebayashi A, Ikeuchi M, et al. 2021. WIND transcription factors orchestrate wound-induced callus formation, vascular reconnection and defense response in Arabidopsis. New Phytologist 232:734−52 doi: 10.1111/nph.17594 |
[88] |
Iwase A, Mitsuda N, Koyama T, Hiratsu K, Kojima M, et al. 2011. The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Current Biology 21:508−14 doi: 10.1016/j.cub.2011.02.020 |
[89] |
Canher B, Heyman J, Savina M, Devendran A, Eekhout T, et al. 2020. Rocks in the auxin stream: wound-induced auxin accumulation and ERF115 expression synergistically drive stem cell regeneration. Proceedings of the National Academy of Sciences of the United States of America 117:16667−77 doi: 10.1073/pnas.2006620117 |
[90] |
Matsuoka K, Yanagi R, Yumoto E, Yokota T, Yamane H, et al. 2018. RAP2.6L and jasmonic acid-responsive genes are expressed upon Arabidopsis hypocotyl grafting but are not needed for cell proliferation related to healing. Plant Molecular Biology 96:531−42 doi: 10.1007/s11103-018-0702-4 |
[91] |
Yang S, Poretska O, Sieberer T. 2018. ALTERED MERISTEM PROGRAM1 restricts shoot meristem proliferation and regeneration by limiting HD-ZIP III-mediated expression of RAP2.6L. Plant Physiology 177:1580−94 doi: 10.1104/pp.18.00252 |
[92] |
Zhou T, Lin Y, Lin Y, Luo J, Ding J. 2022. Regeneration and agrobacterium-mediated genetic transformation of twelve Eucalyptus species. Forestry Research 2:15 doi: 10.48130/fr-2022-0015 |